
Heuristic and Exact Search in Mixed-Integer Programming

Gerald Gamrath and the SCIP team

Zuse Institute Berlin · gamrath@zib.de
SCIP Optimization Suite · http://scip.zib.de

International Workshop on Pattern Databases and Large-Scale Search
Zuse Institute Berlin · October 5, 2018

gamrath@zib.de
http://scip.zib.de

Mixed-Integer Programming

General Form:

min cTx
s.t. Ax ≤ b

x ∈ ZI≥0 × RC
≥0

1. linear objective function
2. general linear constraints
3. general integer variables
4. continuous variables

How does this fit into this workshop?
• no states?
• no actions?
• no clear goal state?
• no pattern databases!
• but still: a similar algorithm

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 1 / 17

SCIP: Solving Constraint Integer Programs
An open branch-cut-and-price framework with techniques from MIP, CP, SAT, and GO.

35+ active developers
• 10+ running Bachelor & Master projects
• 14+ running PhD projects
• 11 postdocs and professors

5 active development centers
• ZIB: SCIP, SoPlex, UG, ZIMPL
• TU Darmstadt: SCIP and SCIP-SDP
• FAU Erlangen-Nürnberg: SCIP
• RWTH Aachen & Uni. Lancaster: GCG

Many international contributors and users
• more than 14 000 downloads per year from 100+ countries

Careers
• 7 former developers are now building commercial optimization software at CPLEX, FICO
Xpress, Gurobi, MOSEK, and GAMS

• 10 awards for Masters and PhD theses: MOS, EURO, GOR, DMV

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 2 / 17

Relaxations and bounds
A common approach for hard nonconvex optimization problems like MIP: compute
bounds on the optimal value

z∗ = min cTx
s.t. Ax ≤ b

x ∈ ZI≥0 × RC
≥0

1. Lower bound L ≤ z∗: relaxation
• in MIP: LP relaxation, ZI RI

• convex and “fast” to solve xLP

2. Upper bound U ≥ z∗: feasible solutions
• if LP relaxation is “accidentally” feasible optimal solution
• later: primal heuristics

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 3 / 17

Relaxations and bounds
A common approach for hard nonconvex optimization problems like MIP: compute
bounds on the optimal value

z∗ = min cTx
s.t. Ax ≤ b

x ∈ ZI≥0 × RC
≥0

1. Lower bound L ≤ z∗: relaxation
• in MIP: LP relaxation, ZI RI

• convex and “fast” to solve xLP

2. Upper bound U ≥ z∗: feasible solutions
• if LP relaxation is “accidentally” feasible optimal solution
• later: primal heuristics

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 3 / 17

Relaxations and bounds
A common approach for hard nonconvex optimization problems like MIP: compute
bounds on the optimal value

z∗ = min cTx
s.t. Ax ≤ b

x ∈ ZI≥0 × RC
≥0

1. Lower bound L ≤ z∗: relaxation
• in MIP: LP relaxation, ZI RI

• convex and “fast” to solve xLP

2. Upper bound U ≥ z∗: feasible solutions
• if LP relaxation is “accidentally” feasible optimal solution
• later: primal heuristics

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 3 / 17

How to solve LPs?

Simplex algorithm Ellipsoid method Interior point

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 4 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅

∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅

∞

∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅

∞

∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP

1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP

1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞

∅

∞

xIP

1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅

∞

xIP

1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅

∞

xIP

1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

LP-based branch-and-bound
Systematic reduction of U− L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree Solution space

xIP

∅∞ ∅∞

xIP
1. the union of leaf nodes contains all improving solutions

2. L = smallest LP bound over all leaf nodes: “best bound”

3. xLP integer⇒ improve “incumbent” U

4. node LP infeasible or node LP bound > U⇒ prune

5. proven optimality gap g = U− L⇒ stop if this is ≤ 0
G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 5 / 17

Dual simplex iterations during tree search

depth avg. iters
root 383.7
1 17.0
2 14.9
3 12.2
4 10.3
5 9.0
6 8.2
...

...
13 4.2
14 4.1
15 3.8
16 3.4
17 3.3
18 3.1
19 2.8
20 2.7
21 2.5
22 2.4
...

...

383.7/3.3 ≈ 116x speedup

0 10 20 30 40 50 60

0

50

100

330 MIPs “1sec–1hour”

avg. nodes per depth avg. LP relaxations per depth

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 6 / 17

Branching rules

Task

• divide into (disjoint)
subproblems

• improve local bounds
• dramatic performance impact.

Techniques

• branching on variables
• most infeasible
• least infeasible
• random branching
• strong branching
• pseudocosts
• reliability
• VSIDS
• hybrid reliability/inference
• cloud branching
• backdoor branching
• …

• branching on constraints
• SOS1
• SOS2
• multiaggregated variables
• general disjunctions

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 7 / 17

Dual gain

Branching children/descendants:

P−j := P ∩ {xj ≤ bxLPj c}, P+j := P ∩ {xj ≥ dxLPj e}

Dual gain: LP objective between a descendant and its parent node P:

xj ≤ bxLPj c xj ≥ dxLPj e

∆c∗j := min{cTx : x ∈ P∗j }} −min{cTx : x ∈ P} ≥ 0, ∗ ∈ {−,+}

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 8 / 17

Scoring function

Selecting fractional candidates based on scores for individual directions

s− := ∆c−j , s
+ := ∆c+j ∀j ∈ F

requires scoring function:
s(s−, s+): R2

≥0 → R≥0

Possibilities:
• Weighted sum for λ ∈ [0, 1]:

s(s−, s+) := λmax{s−, s+}+ (1− λ)min{s−, s+}

• Product for small ε > 0:

s(s−, s+) := max{s−, ε} ·max{s−, ε}

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 9 / 17

Lookahead: strong branching (Gauthier & Ribiere 1977)

1. Perform an explicit look-ahead by solving all possible descendants of the current
node.

x ≤ bxLPc x ≥ dxLPe y ≥ dyLPe y ≤ byLPc

2. Select a fractional variable j ∈ argmax
j′∈F

{s{∆c−j′ ,∆c
+
j′ }}.

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 10 / 17

Lookahead: strong branching with domain propagation (G. 2014)

1. Perform an explicit look-ahead by solving all possible descendants of the current
node.

x ≤ bx∗c

+ prop
x ≥ dx∗e

+ prop

y ≥ dy∗e

+ prop
y ≤ by∗c

+ prop

2. Select a fractional variable j ∈ argmax
j′∈F

{s{∆c−j′ ,∆c
+
j′ }}.

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 10 / 17

Lookback: pseudocosts (Benichou et al. 1971)

Estimate for objective gain based on past branching observations.

• unit gain:
computed from fractionalities f ∗j and LP
gains

• pseudocosts Ψ∗
j :

average unit gain of branching history
• branching decision based on estimated
gains:

s(f−j Ψ−
j , f

+
j Ψ+

j)

Select a fractional variable j ∈ argmax
j′∈F

{s(f−j Ψ−
j , f

+
j Ψ+

j)}.

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 11 / 17

Combinations
Pseudocosts are uninitialized at the beginning of the search.

Reliability branching (Achterberg et al. 2004)
1. Determine the set of fractional variables F 6= ∅.
2. Split F into reliable subset F rel and unreliable subset Furl.
3. Perform strong branching for all j ∈ Furl

4. Record unit gains and update pseudocosts
5. Compare the best strong branching result with the best pseudocost prediction
for the branching decision.

State-of-the-art: Hybrid branching (Achterberg & Berthold 2009)
1. combine reliability branching with other branching scores:

• cutoff information
• inference information
• conflict information

2. take degeneracy into account (G. et al. 2018)

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 12 / 17

Cloud branching (G. et al. 2018)

• LP solutions are typically (dual) degenerate
• multiple LP optima exist
• “the” optimal LP solution returned by the LP solver is
more or less random

• compute a “cloud” C of alternative LP optima
• guide branching by this set of LP solutions rather than
a single one

• new branching rule using only cloud information and
modifications to most existing ones

x?
s2(x?) s1(x?)

I1(C)

I2(C)

s̃1(C)

s̃2(C)

I1(C)

I2(C)

s̃1(C)

s̃2(C) z = cTx

bx?j c x?j dx?j e

∆↓

∆↑

`j(C) uj(C)

z = cTx

bx?j c x?j dx?j e

∆−
j

∆+
j

`j(C) uj(C)

∆̃−
j ∆̃+

j

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 13 / 17

Node Selection

Basic rules

• depth first search (DFS)
→ exploit hot-start

• best bound search (BBS)
→ improve dual bound

• best estimate search (BES)
→ improve primal bound

Usually best bound/estimate interleaved with DFS plunges to find solutions earlier.

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 14 / 17

Node Selection

Basic rules

• depth first search (DFS)
→ exploit hot-start

• best bound search (BBS)
→ improve dual bound

• best estimate search (BES)
→ improve primal bound

Best bound search

• select node with smallest lower bound
• empirically leads to fewest number of nodes
• lower bound is an admissible heuristic fucntion
• if LP bounds of all children are computed in advance, this is similar to A?

Usually best bound/estimate interleaved with DFS plunges to find solutions earlier.

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 14 / 17

Node Selection

Basic rules

• depth first search (DFS)
→ exploit hot-start

• best bound search (BBS)
→ improve dual bound

• best estimate search (BES)
→ improve primal bound

Best estimate (Benichou et al. 1971)
Use learned pseudo costs to estimate objective value

ĉ := cTxLPj +
∑
j∈F

min{f−j Ψ−
j , f

+
j Ψ+

j }

of the best solution in the subtree rooted at a node with LP solution xLP.

Usually best bound/estimate interleaved with DFS plunges to find solutions earlier.

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 14 / 17

Node Selection

Basic rules

• depth first search (DFS)
→ exploit hot-start

• best bound search (BBS)
→ improve dual bound

• best estimate search (BES)
→ improve primal bound

Best estimate (Benichou et al. 1971)
Use learned pseudo costs to estimate objective value

ĉ := cTxLPj +
∑
j∈F

min{f−j Ψ−
j , f

+
j Ψ+

j }

of the best solution in the subtree rooted at a node with LP solution xLP.

Usually best bound/estimate interleaved with DFS plunges to find solutions earlier.

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 14 / 17

Branch-and-bound is accelerated by many more techniques...

Presolving Domain Propagation
x1

x2

x3

x4

⇒

x1

x2

x3

x4

Primal Heuristics

Cutting Planes Conflict Analysis Symmetry Handling

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 15 / 17

ug[SCIP] — the parallel version of SCIP

Some facts and results:
• shared (“FiberSCIP”) and distributed
memory version (“ParaSCIP”)

• solves MIP and MINLP
• successful runs with up to 80.000 SCIP
solvers

• solved 2 previously unsolved MIPLIB
2003 instances

• ds: 4096 cores, about 76 hours, 3
billion nodes

• stp3d: 7186 cores, about 33 hours, 10
million nodes (optimal solution
given)

• and many MIPLIB 2010 instances

HLRN II:

MIPLIB 2003:

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 16 / 17

Conclusions

MIP solving:
• basic algorithm: branch-and-bound tree search
• good bounds are provided by LP relaxation
• accelerated by a bag of tricks

Discussion:
• what can we learn from each other?
• use MIP techniques for search?
• use search within MIP solver components?

Thank you for your attention!

G. Gamrath · Heuristic and Exact Search in Mixed-Integer Programming 17 / 17

	LP-based branch-and-bound

