# Heuristic and Exact Search in Mixed-Integer Programming

Gerald Gamrath and the SCIP team

Zuse Institute Berlin · gamrath@zib.de SCIP Optimization Suite · http://scip.zib.de

International Workshop on Pattern Databases and Large-Scale Search

Zuse Institut<mark>e Berlin · Octo</mark>ber 5, 201<mark>8</mark>





SPONSORED BY THE



Federal Ministry of Education and Research

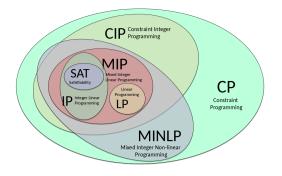
# Mixed-Integer Programming

General Form:

- min  $c^T x$ s.t.  $Ax \le b$  $x \in \mathbb{Z}_{\ge 0}^l \times \mathbb{R}_{\ge 0}^c$
- 1. linear objective function
- 2. general linear constraints
- 3. general integer variables
- 4. continuous variables

# How does this fit into this workshop?

- no states?
- no actions?
- no clear goal state?
- no pattern databases!
- but still: a similar algorithm



# SCIP: Solving Constraint Integer Programs

An open branch-cut-and-price framework with techniques from MIP, CP, SAT, and GO.

#### 35+ active developers

- 10+ running Bachelor & Master projects
- 14+ running PhD projects
- 11 postdocs and professors

#### 5 active development centers

- · ZIB: SCIP, SoPlex, UG, ZIMPL
- TU Darmstadt: SCIP and SCIP-SDP
- FAU Erlangen-Nürnberg: SCIP
- RWTH Aachen & Uni. Lancaster: GCG

#### Many international contributors and users

more than 14 000 downloads per year from 100+ countries

#### Careers

- 7 former developers are now building commercial optimization software at CPLEX, FICO Xpress, Gurobi, MOSEK, and GAMS
- 10 awards for Masters and PhD theses: MOS, EURO, GOR, DMV





#### **Relaxations and bounds**

A common approach for hard nonconvex optimization problems like MIP: compute bounds on the optimal value

$$z^* = \min \quad c^T x$$
  
s.t.  $Ax \le b$   
 $x \in \mathbb{Z}_{\ge 0}^l \times \mathbb{R}_{\ge 0}^c$ 



#### **Relaxations and bounds**

A common approach for hard nonconvex optimization problems like MIP: compute bounds on the optimal value

$$z^* = \min \quad c^T x$$
  
s.t.  $Ax \le b$   
 $x \in \mathbb{Z}_{\ge 0}^l \times \mathbb{R}_{\ge 0}^c$ 

- 1. Lower bound  $L \leq z^*$ : relaxation
  - in MIP: LP relaxation,  $\mathbb{Z}' \rightsquigarrow \mathbb{R}'$
  - convex and "fast" to solve  $\rightsquigarrow x^{\text{LP}}$



#### **Relaxations and bounds**

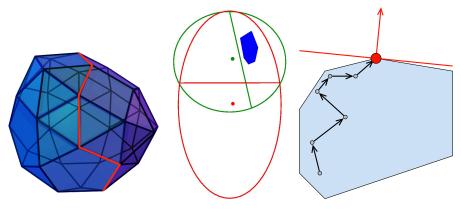
A common approach for hard nonconvex optimization problems like MIP: compute bounds on the optimal value

$$z^* = \min \quad c^T x$$
  
s.t.  $Ax \le b$   
 $x \in \mathbb{Z}_{\ge 0}^l \times \mathbb{R}_{\ge 0}^c$ 

- 1. Lower bound  $L \leq z^*$ : relaxation
  - in MIP: LP relaxation,  $\mathbb{Z}^{l} \rightsquigarrow \mathbb{R}^{l}$
  - convex and "fast" to solve  $\rightsquigarrow x^{\text{LP}}$
- 2. Upper bound  $U \ge z^*$ : feasible solutions
  - If LP relaxation is "accidentally" feasible → optimal solution
  - later: primal heuristics



#### How to solve LPs?



Simplex algorithm

Ellipsoid method

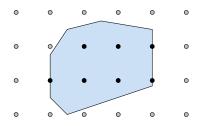
Interior point



Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree

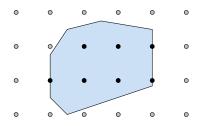
 $\cap$ 





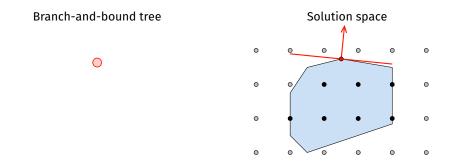
Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree





Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

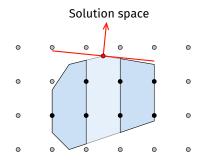




Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)



Branch-and-bound tree

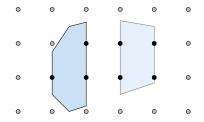




Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree





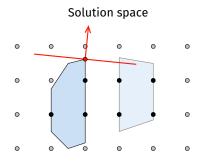


G. Gamrath - Heuristic and Exact Search in Mixed-Integer Programming

Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

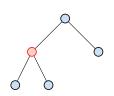


Branch-and-bound tree

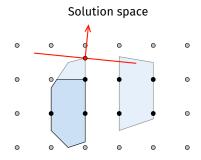




Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)



Branch-and-bound tree

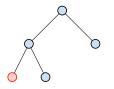


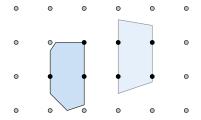


Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree





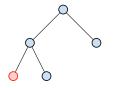


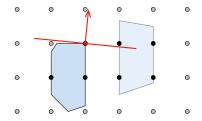


Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree





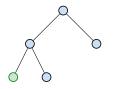


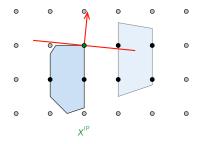


Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree





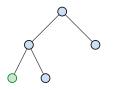


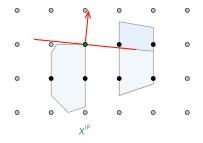


Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree

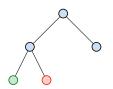






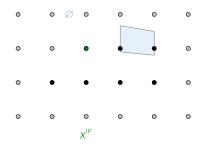


Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)



Branch-and-bound tree

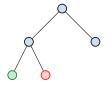
#### Solution space



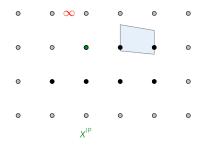


Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

# Branch-and-bound tree



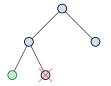
#### Solution space



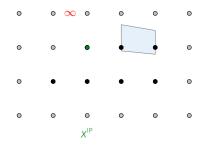


Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

# Branch-and-bound tree

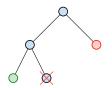


#### Solution space



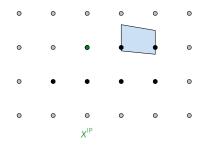


Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)



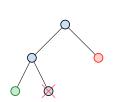
Branch-and-bound tree

#### Solution space

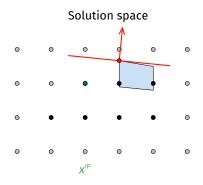




Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

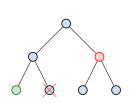


Branch-and-bound tree

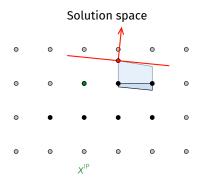




Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

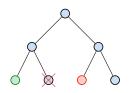


Branch-and-bound tree



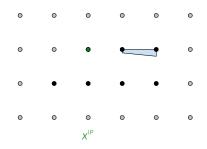


Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)



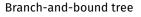
Branch-and-bound tree

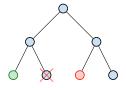
#### Solution space

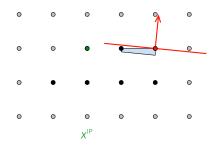




Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)





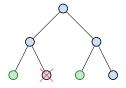


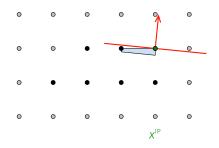


G. Gamrath - Heuristic and Exact Search in Mixed-Integer Programming

Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

Branch-and-bound tree

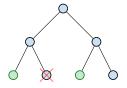


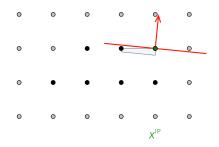




Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

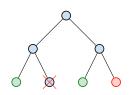
Branch-and-bound tree



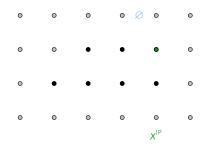




Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

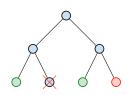


Branch-and-bound tree

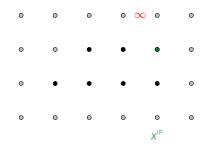




Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)



Branch-and-bound tree



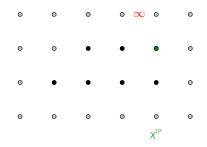


G. Gamrath - Heuristic and Exact Search in Mixed-Integer Programming

Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

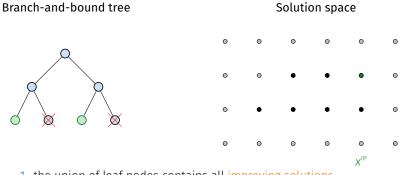
Branch-and-bound tree

#### Solution space





Systematic reduction of U - L by divide-and-conquer (Land & Doig 1960, Dakin 1965)

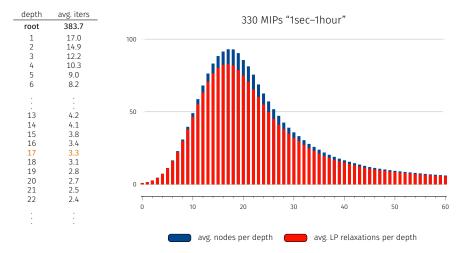


1. the union of leaf nodes contains all improving solutions

- 2. *L* = smallest LP bound over all leaf nodes: "best bound"
- 3.  $x^{LP}$  integer  $\Rightarrow$  improve "incumbent" U
- 4. node LP infeasible or node LP bound  $> U \Rightarrow$  prune
- 5. proven optimality gap  $g = U L \Rightarrow$  stop if this is  $\leq 0$

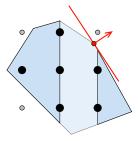
# Dual simplex iterations during tree search

# $383.7/3.3 \approx 116x \text{ speedup}$





# **Branching rules**



#### Task

- divide into (disjoint) subproblems
- improve local bounds
- · dramatic performance impact.

#### Techniques

- branching on variables
  - most infeasible
  - least infeasible
  - random branching
  - strong branching
  - pseudocosts
  - reliability
  - VSIDS
  - hybrid reliability/inference
  - cloud branching
  - backdoor branching
  - ...
- branching on constraints
  - SOS1
  - SOS2
  - multiaggregated variables
  - general disjunctions

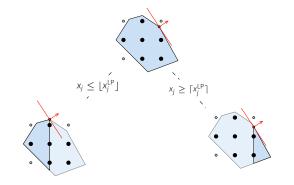


#### Dual gain

Branching children/descendants:

$$P_j^- := P \cap \{x_j \le \lfloor x_j^{LP} \rfloor\}, P_j^+ := P \cap \{x_j \ge \lceil x_j^{LP} \rceil\}$$

Dual gain: LP objective between a descendant and its parent node P:



 $\Delta c_j^* := \min\{c^T x : x \in P_j^*\}\} - \min\{c^T x : x \in P\} \ge 0, \quad * \in \{-, +\}$ 



# Scoring function

Selecting fractional candidates based on scores for individual directions

$$s^- := \Delta c_j^-, s^+ := \Delta c_j^+ \forall j \in \mathcal{F}$$

requires scoring function:  $s(s^-, s^+): \mathbb{R}^2_{\geq 0} \to \mathbb{R}_{\geq 0}$ 

Possibilities:

• Weighted sum for  $\lambda \in [0, 1]$ :

$$s(s^{-}, s^{+}) := \lambda \max\{s^{-}, s^{+}\} + (1 - \lambda) \min\{s^{-}, s^{+}\}$$

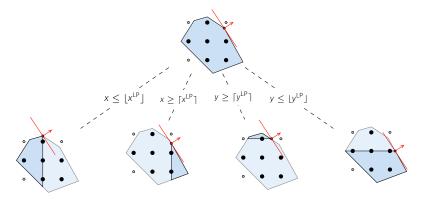
• Product for small  $\epsilon > 0$ :

$$s(s^-, s^+) := \max\{s^-, \epsilon\} \cdot \max\{s^-, \epsilon\}$$



### Lookahead: strong branching (Gauthier & Ribiere 1977)

1. Perform an explicit look-ahead by solving all possible descendants of the current node.

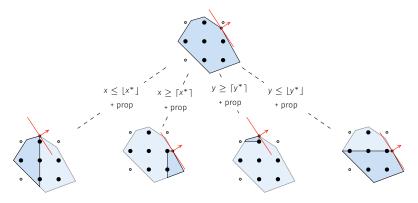


2. Select a fractional variable  $j \in \underset{j' \in \mathcal{F}}{\operatorname{argmax}} \{s\{\Delta c_{j'}^{-}, \Delta c_{j'}^{+}\}\}.$ 



# Lookahead: strong branching with domain propagation (G. 2014)

1. Perform an explicit look-ahead by solving all possible descendants of the current node.



2. Select a fractional variable  $j \in \underset{j' \in \mathcal{F}}{\operatorname{argmax}} \{s\{\Delta c_{j'}^{-}, \Delta c_{j'}^{+}\}\}.$ 

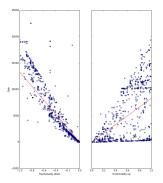


### Lookback: pseudocosts (Benichou et al. 1971)

Estimate for objective gain based on past branching observations.

- unit gain: computed from fractionalities  $f_j^*$  and LP gains
- pseudocosts Ψ<sup>\*</sup><sub>j</sub>: average unit gain of branching history
- branching decision based on estimated gains:

$$s(f_j^-\Psi_j^-,f_j^+\Psi_j^+)$$



Select a fractional variable  $j \in \underset{j' \in \mathcal{F}}{\operatorname{argmax}} \{ s(f_j^- \Psi_j^-, f_j^+ \Psi_j^+) \}.$ 



# Combinations

Pseudocosts are uninitialized at the beginning of the search.

#### Reliability branching (Achterberg et al. 2004)

- 1. Determine the set of fractional variables  $\mathcal{F} \neq \emptyset$ .
- 2. Split  $\mathcal{F}$  into reliable subset  $\mathcal{F}^{rel}$  and unreliable subset  $\mathcal{F}^{url}$ .
- 3. Perform strong branching for all  $j \in \mathcal{F}^{url}$
- 4. Record unit gains and update pseudocosts
- 5. Compare the best strong branching result with the best pseudocost prediction for the branching decision.

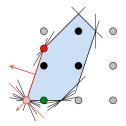
#### State-of-the-art: Hybrid branching (Achterberg & Berthold 2009)

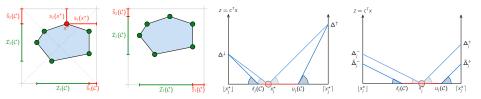
- 1. combine reliability branching with other branching scores:
  - cutoff information
  - inference information
  - conflict information
- 2. take degeneracy into account (G. et al. 2018)



# Cloud branching (G. et al. 2018)

- LP solutions are typically (dual) degenerate
- multiple LP optima exist
- "the" optimal LP solution returned by the LP solver is more or less random
- $\cdot\,$  compute a "cloud"  ${\mathcal C}$  of alternative LP optima
- guide branching by this set of LP solutions rather than a single one
- new branching rule using only cloud information and modifications to most existing ones



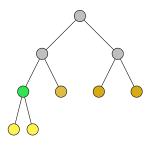




G. Gamrath - Heuristic and Exact Search in Mixed-Integer Programming

### **Basic rules**

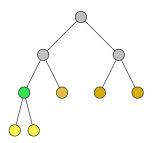
- depth first search (DFS)
  - $\rightarrow$  exploit hot-start





#### **Basic rules**

- depth first search (DFS)  $\rightarrow$  exploit hot-start
- best bound search (BBS)
  - $\rightarrow$  improve dual bound



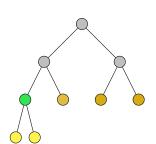
#### Best bound search

- select node with smallest lower bound
- empirically leads to fewest number of nodes
- · lower bound is an admissible heuristic fucntion
- $\cdot\,$  if LP bounds of all children are computed in advance, this is similar to A\*



### **Basic rules**

- depth first search (DFS)  $\rightarrow$  exploit hot-start
- best bound search (BBS)  $\rightarrow$  improve dual bound
- best estimate search (BES)  $\rightarrow$  improve primal bound



#### Best estimate (Benichou et al. 1971)

Use learned pseudo costs to estimate objective value

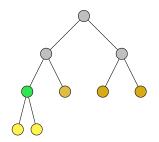
$$\hat{c} := c^{\mathsf{T}} x_j^{\mathsf{LP}} + \sum_{j \in \mathcal{F}} \min\{f_j^- \Psi_j^-, f_j^+ \Psi_j^+\}$$

of the best solution in the subtree rooted at a node with LP solution  $x^{LP}$ .



### **Basic rules**

- depth first search (DFS)  $\rightarrow$  exploit hot-start
- best bound search (BBS)  $\rightarrow$  improve dual bound
- best estimate search (BES)  $\rightarrow$  improve primal bound



#### Best estimate (Benichou et al. 1971)

Use learned pseudo costs to estimate objective value

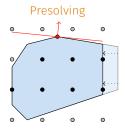
$$\hat{c} := c^{\mathsf{T}} x_j^{\mathsf{LP}} + \sum_{j \in \mathcal{F}} \min\{f_j^- \Psi_j^-, f_j^+ \Psi_j^+\}$$

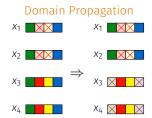
of the best solution in the subtree rooted at a node with LP solution  $x^{LP}$ .

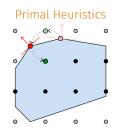
Usually best bound/estimate interleaved with DFS plunges to find solutions earlier.



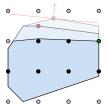
# Branch-and-bound is accelerated by many more techniques...



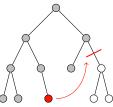


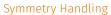


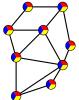
**Cutting Planes** 



**Conflict Analysis** 







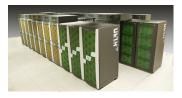


# ug[SCIP] — the parallel version of SCIP

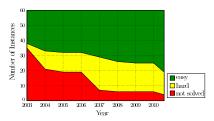
Some facts and results:

- shared ("FiberSCIP") and distributed memory version ("ParaSCIP")
- solves MIP and MINLP
- successful runs with up to 80.000 SCIP solvers
- solved 2 previously unsolved MIPLIB 2003 instances
  - ds: 4096 cores, about 76 hours, 3 billion nodes
  - stp3d: 7186 cores, about 33 hours, 10 million nodes (optimal solution given)
- and many MIPLIB 2010 instances

### HLRN II:



MIPLIB 2003:





### Conclusions

MIP solving:

- basic algorithm: branch-and-bound tree search
- · good bounds are provided by LP relaxation
- accelerated by a bag of tricks

Discussion:

- what can we learn from each other?
- use MIP techniques for search?
- use search within MIP solver components?

# Thank you for your attention!

