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Fifteen Puzzle (1869)
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          1   2   3 
    4  5   6   7 
   8   9  10  11   
  12 13  14 15 • Easy to manipulate and encode 

• Has 1013 states

• Has long history of serving as testbed for 
heuristic search

• Baseline heuristic: Manhattan distance

• Solved optimally with IDA* [Korf 1985]
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Domains
15 puzzle

• 10^13 states
• First solved by [Korf 85] with 

IDA* and Manhattan distance
• Takes 53 seconds

24 puzzle
• 10^24 states
• First solved by [Korf 96]
• Takes two days
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1999The year 

How do we find strong heuristics for the Tile Puzzle?

How can we combine knowledge from different PDBs?

 

  

    B  x   x    3 
   x   x   x    7 
   x   x   x   11  
  12 13 14 15 

Ariel
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Korf



Three ideas
1)  Disjoint additive PDBs [AIJ 2002] 

Statically-partitioned PDBs  ( 2000)
Dynamically-partitioned-PDBs [JAIR 2004]
Vertex-cover table [never published] (2001) 

2) Compressed PDBs
Entry compression (2004-2007)
Value compression (2017)
Bloom filters (2014)
Learning PDBs (2008)

3) Dual-lookups in PDBs  and Inconsistency (2005)
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Older work on PDBS 
In the nineties
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Homomorphic Abstractions
• Many search spaces can be abstracted by 

merging nodes into  abstract nodes

• Distances from abstract spaces are lower 
bounds for the original problem

32 2
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1) PDBs for the 15-puzzle
[Culberson and Schaeffer 96]

• Many problems can be abstracted into 
subproblems that must be also solved. 

• A solution to the subproblem is a lower 
bound on the entire problem.

 

  

    B  1   2    3 
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Idea was inspired by endgame 
databases from Checkers
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Pattern Databases heuristics
• A pattern database (PDB) is a lookup table that stores 

solutions to all configurations of the sub-problem (patterns)

• This PDB is used as the h-value of the f=g+h of nodes during 
the search

Search 
space 

Projection/
mapping

1013 States
259 Million states

Pattern
space

181
202
183
174
195

# h-value

 

  

    B  1   2    3 
   4   5   6    7 
   7   8   9   11  
  12 13 14 15 

 

  

    B  x   x    3 
   x   x   x    7 
   x   x   x   11  
  12 13 14 15 
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More than one PDBs 
• If you have k of admissible heuristics (e.g. 
PDBs), their max is also admissible,
• h=max(h1,h2… hk)

 

  

    B  x   x    3 
   x   x   x    7 
   x   x   x   11 
  12 13 14 15 
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   8   9  10 11 
  12 13 14 15 



18

One large of a few small ones?
• Given 1 giga byte of memory, how do we  best use it with PDBs?

• It is better to use many small PDBs and take their maximum instead of 
one large PDB?  [Holte, Newton, Felner, Meshulam and Furcy, ICAPS-2004] 

• It is better to be more precise on the low h-values than on the large h-values
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]1997Korf Rubik’s Cube [) 2

Problem:      à 3x3x3 10^19 states

Subproblem: à 2x2x2 88 Million states.

The max of 6-6-8 PDB



3) All pairwise heuristics
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AAAI-96
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Pairwise distance

• Manhattan distance =2
• Pairwise distance = 4
• Pairwise distance over MD = 2

12
1 2goal

Linear conflict



• Mutual cost graph (MCG)
– Vertices:                tiles
– Edges:                   pairs of tiles.
– Weights of edges: pairwise cost 

(above MD)

Algorithm
• Partition to disjoint pairs
• Perform Maximal Matching on the MCG

22

1 2

3 4
2

4 2

4
2 2

We can add 4+2=6 to MD

i) Maximal Matching on the pairwise graph 



• Mutual cost graph (MCG)
– Vertices:                tiles
– Edges:                   pairs of tiles.
– Weights of edges: pairwise cost 

(above MD)

Algorithm
• Dynamic partition to disjoint pairs
• Perform Maximal Matching on the MCG
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1 2

3 4
2

4 2

4
2 2

We can add 4+2=6 to MD

Maximal Matching on the pairwise graph 

Very related to “systematic partitioning”



1999My first contribution: 
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Weighted Vertex Cover
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• MM gives 2

• However, each edge (x,y) is a 
constraint in the form:    X+Y≥2

• Yields a heuristic of 3 



Weighted vertex cover
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• Due to even-odd parity rules, the actual 
constraint is not only that X+Y≥2

but that:   (X≥2 or Y≥2)
• For the triangle (or any pairwise graph) we need 

to solve the Vertex-Cover problem.

• This yields a heuristic of 4



From pairs to triples and quadruples
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• For triples {x,y,z}=4 we write

• Now want the minimal assignments to tiles 
that satisfy these constraints.

• This is called weighted vertex-cover 
(ordinary vertex cover is a special case)



Weighted vertex cover
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• WVC is NP-complete but…for up to triples

– We can only store additions above MD

– We only get few hyperedges.

– A number of disjoint connected components

– Can be solved incrementally while moving from 
parent to child.

WVC for our purposes was 
solved rather fast!
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puzzle15 Experimental Results:
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1) Disjoint Additive PDBs

  

          1   2   3 
    4   5   6   7 
   8   9  10  11   
  12 13  14 15 

• Values of disjoint databases can be added and are 
still admissible

•The 7-tile and 8-tile subproblems  are disjoint: 
à each operator belongs to one subproblem only

  

          1   2   3 
    4   5   6   7 
         
   

  

           
     
   8   9  10  11   
  12 13  14 15 



Enhancements
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• Symmetry: Reflection 
about the main diagonal

7-8 7-8
• One can store just the addition over MD in the PDB 
• These additions come in units of 2.
• This was called Delta heuristics [sturtevant & Felner 2017] 

Very related to “interesting patterns” by 
[Pommerening, Roger, and Helmert 2013]
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Disjoint PDBs

5-5-5 6-6-3 7-8

6-6-6-6

Also called: Statically partitioned PDBs
15 puzzle

24 puzzle

3-4-4-4
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puzzle15 Experimental Results:
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3) Vertex-cover tables
• We store a small number of rather large 

overlapping PDBS
For example, we store 6 different 7-tile PDB

7

7
7

7

• Here we cannot solve WVC on the fly

7 7
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3) Vertex-cover tables

Val P6P5P4P3P2P1

14826422
12642042
10064804

• Instead we do it in a preprocessing phase

• Assume we have 6 different PDBs each with q 
different values
– T-tile PDB {0,2,4,6,8,10,12}

• We have 6q combinations

• We  build a table with 6q rows

• Each stores WVC for the corresponding entry.
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3) Vertex-cover tables

• In the preprocessing phase:
1. Fill the VCT table with the correct values

• For each node in the main search 

1. Retrieve the PDB values for all stored groups

2. Use these values as indexes and lookup the relevant 
entry in the VCT to retrieve the value of WVC.

3. Add this value to MD.
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3) Vertex-cover tables: generality

1) Number of entries is smaller than the 
number of expected nodes.

2) Table can be built lazily

3) Other problems too.
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puzzle15 Experimental Results:
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puzzle24 Experimental Results:

6-6-6-6
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General Additive PDBS
• What about problems where each operator 

moves more than one object?
• This was addressed by [Yang, Holte, Culberson, 

Zahavi, Felner JAIR 2008]
• Cost splitting – split the costs among the 

different (non-disjoint) sub-problems.

• Location based costs – we only charge 
the pattern that moved into a special 
location.

• Additivity was also used in planning.
– [pommerening et al.]
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Compressing pattern database 
]2007-JAIR, 04-Felner et al AAAI[

• Entry Compression: 
– Nearby entries in PDBs are highly correlated !!

• We can compress nearby entries by storing their 
minimum in one entry.

• We show that à most of the knowledge is preserved
• Consequences: Memory is saved, larger patterns can be 

used à speedup in search is obtained.
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Cliques in the pattern space
• The values in a PDB  for 

a clique are d or d+1
• In permutation puzzles 

cliques exist when only 
one object moves to 
another location. 

G d

d
d+1

• Usually they have nearby entries in the PDB
• A[4][4][4][4][4]

A clique in TOH4
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Compressing cliques
• Assume a clique of size K with values d or d+1
• Store only one entry (instead of K) for the clique with 

the minimum d. Lose at most 1. 
– A[4][4][4][4][4] A[4][4][4][4][1] 
– Instead of 4^p we need only 4^(p-1) entries. 

• This can be generalized to a set of nodes with 
diameter D.  (for cliques D=1)
– A[4][4][4][4][4] A[4][4][4][1][1]

• In general: compressing by k disks reduces memory 
requirements from 4^p to 4^(p-k)
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)2+14disks  (16 results: 4 TOH
Mem MBTimeNodesDAvg HH(s)PDB

25614.3436,479,151087.0311614/0 + 2
6414.6937,964,227186.4811514/1 + 2
1615.4140,055,436385.6711314/2 + 2 
416.9444,996,743584.4411114/3 + 2
117.3645,808,328982.7310714/4 + 2

0.25623.7861,132,7261380.8410314/5 + 2 

• Memory was reduced by a factor of 1000!!! 
at a cost of only a factor of 2 in the search 
effort.
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larger versions: 4TOH
MemTimeNodesAvg HTypePDBsize

256>421>393,887,92381.5static14/0 + 317

2562,501238,561,59087.0dynamic14/0 + 317

25683155,737,832103.7static15/1 + 217

256717,293,603123.8static16/2 + 1 17

256463380,117,836123.8static16/2 + 218

• For the 17 disks problem a speed up of 
3 orders of magnitude is obtained!!!

• The 18 disks problem can be solved in 
5 minutes!!
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Tile Puzzles

• Storing PDBs for the tile puzzle
• (Simple mapping) A multi dimensional array à

A[16][16][16][16][16]    size=1.04Mb
• (Packed mapping) One dimensional array  à

A[16*15*14*13*12 ]    size = 0.52Mb.
• Time versus memory tradeoff !!

  

               A  B     
                  C   
 
   D         

  

               A  B     
                  C   
 
        D      

  

               A  B     
              D C 
 
              

Goal State
Clique
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puzzle results15 
• A clique in the tile puzzle is of size 2. 
• We compressed the last index by two à

A[16][16][16][16][8]
Avg HMemTimeNodescompressTypePDB
44.75576,5750.081136,288Nopacked1    7-8
45.63576,5750.03436,710Nopacked1+ 7-8
43.6457,6570.232464,977Nopacked1 7-7-1
43.64536,8700.058464,977Nosimple1 7-7-1
43.02268,4350.069565,881Yessimple1 7-7-1
43.98536,8700.021147,336Yessimple2 7-7-1
44.92536,8700.01666,692Yessimple2+ 7-7-1
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Value Range Compression 
]2017-AAAISturtevant and Felner, [

• Value compression:
– When you have a large range of values partition them into disjoint 

regions.
– Store a value for the entire region

• For example for numbers 0…99
• Partition to [0..9] [10..19] …. [90..99]
• Store, 0, 10, 20 … 90  for these regions.

• You save many bits. Loss of information is small

• Combination of entry and value compression proved useful



VC2:  Brute force -- 16 and 17 become 15

VC2h: Intelligent value compressing

EC2 (entry compression): two nearby entries

52
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Combining  both VC and EC
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Using bloom filters
]2014SoCS Sturtevant and Felner, [

Partial Pattern Databases (PPDBs) 
[Anderson, Holte, and Schaeffer 2007]: 

– only store the first D levels
– Any item >D will be treated as D+1

Bloom filters [1971]: performs membership test. 
• Insert: a number of hash functions, each sets a bit.
• Check: lookup all bits of an item
• Small chance for false positive
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PDBs with bloom filters
Level by level bloom filters

– Build a bloom filter for each of the D levels
– Lookup: 

Iterate on levels i from 1 to D{
If bloom(i)=True

set h=i
}
Set h=D+1

In case of a false positive 
h is still admissible

We can compress ranges (levels)  
too (like VRC)
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PDBs with bloom filters

Compressed PDB within a bloom filter
• Build one bloom filter for all values
• For each item store its value
• In case of a collision, store the minimum.

Lookup: look on all hash values and take the maximum 



Experiments with bloom filters

57
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Learning PDBs
[Samadi,Felner and Holte, ECAI-2008)  

• Preprocessing:
– Build a PDB
– Use ANN to learn it.
– Build a side hash function that stored all the values that 

were overestimated.

• During Search:
– Consult the hash table.
– Consult the ANN

• Enhancements: use Decision Tree to classify 
Positive Delta
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• Dual lookups in pattern databases
[Felner et al, IJCAI-05]
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Symmetries in PDBs
• Symmetric lookups were already 

performed by the first PDB paper of 
[Culberson & Schaeffer 96]

• examples 
– Tile puzzles: reflect the tiles 

about the main diagonal.
– Rubik’s cube: rotate the cube

• We can take the maximum among the 
different lookups

• These are all geometrical symmetries
• We suggest a new type of symmetry!!

                      
 

                   
        

8

8

7

7
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Regular and dual representation
• Regular representation of a problem:
• Variables – objects (tiles, cubies etc,)
• Values – locations
• Dual representation:
• Variables – locations
• Values – objects
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Dual lookups in PDBsRegular vs. 

  

               2   3 
              6   7 
       

• Regular question:
Where are tiles {2,3,6,7}  and how 
many moves are needed to gather 
them to their goal locations?

• Dual question:
Who are the tiles in locations 
{2,3,6,7}  and how many moves 
are needed to distribute  them to 
their goal locations?
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Regular and dual lookups

• Regular lookup: PDB[8,12,13,14]
• Dual lookup:      PDB[9,5,12,15]
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Regular and dual in TopSpin

• Regular lookup for C : PDB[1,2,3,7,6]
• Dual lookup for C:      PDB[1,2,3,8,9]
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Dual lookups

• Dual lookups are possible when there is a 
symmetry between locations and objects:
– Each object is in only one location 

and each location occupies only one 
object.

• Good examples: TopSpin, Rubik’s cube
• Bad example: Towers of Hanoi
• Problematic example: Tile Puzzles
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1) Inconsistent heuristics
[ Zahavi, et al. AAAI-2007, 
Zhang et al. IJCAI 2009,
Felner et al. AIJ-2011 ]

Joint work with Uzi Zahavi, 
Zhifu Zhang, 
Nathan Sturtevant, 

Robert Holte and 
Jonathan Schaeffer.
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Inconsistent heuristics
]

• Inconsistency sounds negative

• “It is hard to concoct heuristics that are 
admissible but are inconsistent”
[AI book, Russel and Norvig 2005]

• “Almost all admissible heuristics are 
consistent” [Korf,  AAAI-2000]
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Consistent heuristics
• A heuristic is consistent if for every two 

nodes n and m

• Intuition: h cannot change by more than 
the change of g

h(n) £ c(n,m) + h(m)

h(m) £ c(m,n) + h(n)

For undirected graphs: |h(n)-h(m)| ≤ c(n,m)
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Inconsistent heuristics

• A heuristic is inconsistent if for some 
two nodes n and m

g=5
h=5

f=10
g=6
h=2
f=8

• The child is inconsistent
with its parent1

|h(n)-h(m)| > dist(n,m)   
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Reopening of nodes with A*

• Node d is expanded twice with A*!!

0

G

a

b

c

d 5

0

5
00

f=1

f=2

f=3
f=6

f=8

f=2

f=7
f=0

I
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• In the context of A* inconsistency 
was considered a bad attribute

Extreme case: exponential number of 
node expansions. n5(23), n1(11), n2(12), n1(10), n3(13), 
n1(9), n2(10),n1(8), n4(14), n1(7), n2(8), n1(6), n3(9), n1(5), n2(6), n1(4).



Inconsistency in practical graphs

72
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Inconsistency and IDA*

• In the context of A* inconsistency was 
considered a bad attribute

• Node re-opening is not a problem with 
IDA* because each path to a node is 
examined anyway!!

• No overhead for inconsistent heuristics
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Pathmax

• The pathmax (PMX) method corrects 
inconsistent heuristics. [Mero 84,Marteli 77] 

g=5
h=5

f=10
g=6
h=2 à4
f=8à10

• The child inherits the f-value 
of the parent  if it is larger1Pathmax ony corrects the current path to be consistent, 

not the entire graph [Holte, SoCS 2010]
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BPMX)Bidirectional pathmax (
]2005-Holte IJCAISchaeffer, Zahavi, Felner, [

• Bidirectional pathmax: h-values are 
propagated in both directions 
decreasing by 1 in each edge.
– If the IDA* threshold is 2 then with BPMX 

the right child will not even be generated!!

2

5 1

4

5 3

h-values

BPMX



76

BPMX within A*
BMPX(1)

•We have a node p and its children n1, n2 … nk at hand.
•Let h’ be the largest heuristic among the children
•For each child n we set  

– h(n)=max(h(n), h’-2)
•For the parent p we set

– h(p)=max(h(n),h’-1)

à Going deeper did not prove to be cost effective.
à BPMX(∞) can be great or catastrophic. [See paper]

3
8 2 7

7
8 6 7



Achieving inconsistent heuristics

1) Random selection of heuristics (out of K)

2) Dual evaluations
are inconsistent 
[Zahavi et al. AAAI-2006]

3) Compressed pattern databases
In general – any partial heuristic is inconsistent.
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More than one heuristic
• A munber of different PDBs

• Symmetric lookups
– Tile puzzles: reflect the tiles 

about the main diagonal.
– Rubik’s cube: rotate the cube

                      
 

                   
        

8

8

7

7
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Randomizing a heuristic) 1
Taking the maximum of K heuristics is
• Admissible
• Consistent
• Better than each of them
• Drawbacks: Overhead of K heuristics lookups  

diminishing return.

Alternatively, we can randomize which 
heuristic out of K to consult.

• Admissible
• Inconsistent
• Benefits: Only one look up. BPMX can be activated. 
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Regular and dual in TopSpin

• Regular lookup for C : PDB[1,2,3,7,6]
• Dual lookup for C:      PDB[1,2,3,8,9]
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Inconsistency of Dual lookups

Example: Top-Spin
c(b,c)=1

Consistency of heuristics:
|h(a)-h(b)| <= c(a,b)

Regular Dual

b 0 0
c 1 2

• Both lookups for B
PDB[1,2,3,4,5]=0

• Regular lookup for C 
PDB[1,2,3,7,6]=1

• Dual lookup for C      
PDB[1,2,3,8,9]=2
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Compressing pattern database 
are inconsistent

• 3 and 5 are inconsistent



84

Rubik’s cube results
TimeNodesLookupsNo

28.1890,930,662Regular1
7.3819,653,386Dual1
3.248,315,116Dual+BPMX1
3.309,652,138Random1
1.253,828,138Random+BPMX1
7.8513,380,154Regular2

11.6010,574,180Regular4

7-edges PDB over 1000 instances of depth 14
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Heuristic value distribution

• Notice that all these heuristics have the   
same average value
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Tile puzzle results
TimeNodesLookupsNo
0.081136,289Regular1
0.139247,299Dual+BPMX1
0.02944,829Random+BPMX1
0.03436,130Regular+reflected2

0.02526,8622 Random+BPMX2

0.02621,4253 Random+BPMX3
0.02218,601All 44

7-8 additive PDB over 1000 instances
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Summary

• PDBs are very exciting
• Still ongoing direction
• Many future ideas


