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The Flight Planning Problem

Objective
Compute a feasible, minimum cost, 3D trajectory

Given:

• Origin and Destination airports s, t
• Airway Network and possible flight altitudes
• Weather forecast
• Departure time and constant flight speed
• Overflight Costs
• Fuel Prices
• Aircraft specifications, weight, …
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The Airway Network

Airway Network:
A directed graph
G = (V,A) with
• |V| ≈ 110 000
• |A| ≈ 410 000

Source: skyvector.com
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The Airway Network - on Different Levels

Figure 1: A typical flight profile. Source: flightradar24.com

PDB 2018 4



The Airway Network

Airway Network:
A directed graph
G = (V,A) with
• |V| ≈ 110 000
• |A| ≈ 410 000

Source: skyvector.com

×43

PDB 2018 5



The Flight Planning Problem

Objective
Compute a feasible, minimum cost, 3D trajectory

Given:

• Origin and Destination airports s, t
• Airway Network and possible flight altitudes
• Weather forecast

• Departure time and constant flight speed
• Overflight Costs
• Fuel Prices
• Aircraft specifications, weight, …

PDB 2018 6



Weather Forecast

Source: windy.com
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Overflight Costs

Figure 2: Route BCN-TXL without Overflight Costs and with Overflight Costs.
Source: skyvector.com
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The Planning Process starts when

• the aircraft type is known [1]

• the weather forecast is available [1]

• we know the approximate passenger count × [2]

• we know about extraordinary circumstances [1]

The computation must be fast.

1Source: Wikipedia
2Source: www.shareicon.net
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Observations

Figure 3: Search spaces for A?

(yellow) and Dijsktra’s Algorithm
(gray) between LHR and JFK.
Source: Google Earth

• Only ≈ 1 300 nodes are airports.

• We almost know the direction of
the flight.

• A? may yield a speedup over
Dijkstra’s Algorithm.

• Due to weather: potential
calculation is not straightforward.
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Simplification



Simplifications

• Concentrate on one layer of the graph

• Only look at the weather-dependency
• Disregard overflight costs and restrictions
• Optimise for the minimum time (in this case, equivalent to
minimum fuel consumption)

Examine benefits of A? on this subproblem
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A? – The Potential Function πt

• Given: travel time
function Ta for each
arc a ∈ A.

• Find minimum travel
time

T(a) := min
τ∈[t0,tN]

Ta(τ).
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• Compute all-to-one shortest path trees towards all airport
nodes (≈ 1300) using T as arc costs.

• Define πt(v) = T(Ptv) – the length of the shortest (v, t)-path on
(G, T).
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Interlude: Nomenclature

w(a, τ)

wC(a, τ)

wT (a, τ)

Minimum travel time on a ∈ A↔ “Optimal” wind conditions.
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Underestimate the Travel Time: Super-Optimal Wind

• The general travel time
function is piecewise
smooth.

• Instead of finding the
minimum travel time,
underestimate it.

w1

w2

wopt

• For a given time interval, superimpose the minimum cross wind
and maximum track wind to obtain the Super-Optimal Wind
vector yielding a lower bound T(a) on the travel time for a ∈ A.
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Super-Optimal Wind in Theory and Practice

Theorem: Let T∗(a) be the minimum travel time on a ∈ A. Under
reasonable assumptions on the wind, there is a constant C such that

0 ≤ T∗(a)− T(a) ≤ C∆.

Theorem: If πt(v) = T(Ptv), then πt is admissible and consistent.

Super-Optimal Wind in Practice

• Average relative error over all arcs: 0.434 · 10−3

• No error in 1/3 of all cases
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Contraction Hierarchies

• State-of-the-art routing algorithm for road networks3

• Speedup on road networks: over 40 000 wrt Dijkstra’s algorithm
• Also effective in the time-dependent case4

• Karlsruhe Institute of Technology provides free source code of
their implementation

3R. Geisberger et al.: Exact Routing in Large Road Networks Using Contraction
Hierarchies, Transportation Science, 2012
4G. Batz et al.: Minimum Time-Dependent Travel Times with Contraction Hierarchies,
Journal of Experimental Algorithmics, 2013
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A? vs Dijkstra’s Algorithm vs Contraction Hierarchies

dijkstra contraction hierarchies A?

Instance query
(ms)

prep
(min)

query
(ms)

speedup
×

prep
(min)

query
(ms)

speedup
×

I-29-Dec-1 4.91 380.48 4.08 1.20 0.031 0.22 21.51
I-34-Dec-1 4.91 451.82 4.27 1.15 0.030 0.24 20.24
I-39-Dec-1 4.93 195.75 3.23 1.53 0.030 0.16 30.15
I-29-Feb-1 4.90 414.78 3.94 1.25 0.031 0.21 22.96
I-34-Feb-1 4.86 466.95 3.96 1.23 0.028 0.21 22.23
I-39-Feb-1 4.92 184.20 3.01 1.63 0.029 0.15 31.50
I-29-Mar-1 4.55 216.57 2.82 1.61 0.025 0.16 27.27
I-34-Mar-1 4.55 189.18 2.92 1.55 0.026 0.18 24.38
I-39-Mar-1 4.58 127.38 2.52 1.81 0.026 0.15 29.45
I-29-Dec-3 4.36 312.40 2.67 1.63 0.026 0.19 22.03
I-34-Dec-3 4.38 351.70 2.80 1.56 0.026 0.21 20.85
I-39-Dec-3 4.38 160.20 2.30 1.90 0.026 0.14 30.87
I-29-Feb-3 4.31 328.47 2.66 1.62 0.025 0.18 23.09
I-34-Feb-3 4.28 372.15 2.92 1.47 0.027 0.19 21.68
I-39-Feb-3 4.33 155.07 2.20 1.97 0.025 0.13 31.94
I-29-Mar-3 4.22 179.45 2.31 1.82 0.022 0.14 28.39
I-34-Mar-3 4.26 146.52 2.33 1.83 0.023 0.16 26.68
I-39-Mar-3 4.26 96.80 2.03 2.10 0.023 0.13 31.02

Summary
Average 4.55 262.77 2.94 1.60 0.027 0.18 25.90
Minimum 4.22 96.8 2.03 1.15 0.022 0.13 20.24
Maximum 4.93 466.95 4.27 2.10 0.031 0.24 31.94
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Generalisation for 3D

• The previous 2D results hold
true in the 3D case, too.

• Instead of using A?, we
compute an a-priori search
space:

• Compute an upper bound
solution, say its arrival time is
T0.

• A node v ∈ V is active iff it
satisfies the inequality

T(Pvs) + T(Ptv) ≤ T0.

s

t

T0(Pts)

v

Pvs

Ptv

T(Pvs)

T(Ptv)
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Generalisation for 3D

Figure 4: A-priori search space for LED-FRA. Source: Google Earth

• Benefit: this pruning also works for algorithms without heaps.
• Incorporation of overflight costs is also possible.
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Thank You!

Reference: Blanco et al.: Solving

Time-Dependent Shortest Path

Problems on Airway Networks

Using Super-Optimal Wind,

ATMOS 2016 Proceedings,

2016, (Best Paper Award)

Source: Google Earth
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