Large-Scale Search in Flight Planning

Adam Schienle 05 October 2018

Zuse Institute Berlin

The Flight Planning Problem

The Flight Planning Problem

Given:

• Origin and Destination airports s, t

Given:

- \cdot Origin and Destination airports s, t
- Airway Network and possible flight altitudes

The Airway Network

Airway Network: A directed graph G = (V, A) with

- $\cdot |V| \approx 110\,000$
- \cdot $|A| \approx 410\,000$

The Airway Network - on Different Levels

Figure 1: A typical flight profile. Source: flightradar24.com

The Airway Network

Airway Network: A directed graph G = (V, A) with

• $|V| \approx 110\,000$

 $\times 43$

 \cdot $|A| \approx 410\,000$

Given:

- \cdot Origin and Destination airports s, t
- Airway Network and possible flight altitudes
- \cdot Weather forecast

Weather Forecast

Given:

- \cdot Origin and Destination airports s, t
- Airway Network and possible flight altitudes
- \cdot Weather forecast
- Departure time and constant flight speed

Given:

- \cdot Origin and Destination airports s, t
- Airway Network and possible flight altitudes
- \cdot Weather forecast
- Departure time and constant flight speed
- Overflight Costs

Overflight Costs

Figure 2: Route BCN-TXL without Overflight Costs and with Overflight Costs. Source: skyvector.com

Given:

- \cdot Origin and Destination airports s, t
- Airway Network and possible flight altitudes
- Weather forecast
- Departure time and constant flight speed
- Overflight Costs
- Fuel Prices

Given:

- \cdot Origin and Destination airports s, t
- Airway Network and possible flight altitudes
- \cdot Weather forecast
- Departure time and constant flight speed
- Overflight Costs
- Fuel Prices
- Aircraft specifications, weight, ...

• the aircraft type is known

• the aircraft type is known

• the weather forecast is available

• the aircraft type is known

- the weather forecast is available
- \cdot we know the approximate passenger count

• the aircraft type is known

- \cdot the weather forecast is available
- \cdot we know the approximate passenger count
- we know about extraordinary circumstances

 \cdot the aircraft type is known

- the weather forecast is available
- \cdot we know the approximate passenger count
- we know about extraordinary circumstances

The computation must be fast.

Figure 3: Search spaces for A* (yellow) and Dijsktra's Algorithm (gray) between LHR and JFK. Source: Google Earth \cdot Only \approx 1300 nodes are airports.

Figure 3: Search spaces for A^{*} (yellow) and Dijsktra's Algorithm (gray) between LHR and JFK. Source: Google Earth

- $\cdot\,$ Only \approx 1300 nodes are airports.
- We *almost* know the direction of the flight.

Figure 3: Search spaces for A^{*} (yellow) and Dijsktra's Algorithm (gray) between LHR and JFK. Source: Google Earth

- $\cdot\,$ Only \approx 1300 nodes are airports.
- We *almost* know the direction of the flight.
- A* may yield a speedup over Dijkstra's Algorithm.

Figure 3: Search spaces for A^{*} (yellow) and Dijsktra's Algorithm (gray) between LHR and JFK. Source: Google Earth

- · Only \approx 1300 nodes are airports.
- We *almost* know the direction of the flight.
- A* may yield a speedup over Dijkstra's Algorithm.
- Due to weather: potential calculation is not straightforward.

Simplification

 \cdot Concentrate on one layer of the graph

- \cdot Concentrate on one layer of the graph
- Only look at the weather-dependency

- Concentrate on one layer of the graph
- Only look at the weather-dependency
- Disregard overflight costs and restrictions

- $\cdot\,$ Concentrate on one layer of the graph
- Only look at the weather-dependency
- Disregard overflight costs and restrictions
- Optimise for the minimum time (in this case, equivalent to minimum fuel consumption)

- $\cdot\,$ Concentrate on one layer of the graph
- Only look at the weather-dependency
- Disregard overflight costs and restrictions
- Optimise for the minimum time (in this case, equivalent to minimum fuel consumption)

Examine benefits of A^{\star} on this subproblem

• Given: travel time function T_a for each arc $a \in A$.

Entry time for some arc *a* (in h)

- Given: travel time function T_a for each arc $a \in A$.
- Find minimum travel time

 $\underline{T}(a) := \min_{\tau \in [t_0, t_N]} T_a(\tau).$

Entry time for some arc *a* (in h)

- Given: travel time function T_a for each arc $a \in A$.
- Find minimum travel time

 $\underline{T}(a) := \min_{\tau \in [t_0, t_N]} T_a(\tau).$

Entry time for some arc *a* (in h)

• Compute all-to-one shortest path trees towards all airport nodes (\approx 1300) using <u>T</u> as arc costs.

- Given: travel time function T_a for each arc $a \in A$.
- Find minimum travel time

$$\underline{T}(a) := \min_{\tau \in [t_0, t_N]} T_a(\tau).$$

Entry time for some arc *a* (in h)

- Compute all-to-one shortest path trees towards all airport nodes (\approx 1300) using <u>T</u> as arc costs.
- Define $\pi_t(v) = \underline{T}(P_v^t)$ the length of the shortest (v, t)-path on (G, \underline{T}) .

Interlude: Nomenclature

Interlude: Nomenclature

Minimum travel time on $a \in A \leftrightarrow$ "Optimal" wind conditions.

Underestimate the Travel Time: Super-Optimal Wind

• The general travel time function is piecewise smooth.

Underestimate the Travel Time: Super-Optimal Wind

- The general travel time function is piecewise smooth.
- Instead of finding the minimum travel time, underestimate it.

Underestimate the Travel Time: Super-Optimal Wind

- The general travel time function is piecewise smooth.
- Instead of finding the minimum travel time, underestimate it.

• For a given time interval, superimpose the minimum cross wind and maximum track wind to obtain the **Super-Optimal Wind** vector yielding a lower bound $\underline{T}(a)$ on the travel time for $a \in A$. **Theorem:** Let $T^*(a)$ be the minimum travel time on $a \in A$. Under reasonable assumptions on the wind, there is a constant C such that

 $0 \leq T^*(a) - \underline{T}(a) \leq C\Delta.$

Theorem: Let $T^*(a)$ be the minimum travel time on $a \in A$. Under reasonable assumptions on the wind, there is a constant C such that

$$0 \leq T^*(a) - \underline{T}(a) \leq C\Delta.$$

Theorem: If $\pi_t(v) = \underline{T}(P_v^t)$, then π_t is admissible and consistent.

Theorem: Let $T^*(a)$ be the minimum travel time on $a \in A$. Under reasonable assumptions on the wind, there is a constant C such that

$$0 \leq T^*(a) - \underline{T}(a) \leq C\Delta.$$

Theorem: If $\pi_t(v) = \underline{T}(P_v^t)$, then π_t is admissible and consistent.

Super-Optimal Wind in Practice

- Average relative error over all arcs: $0.434\cdot10^{-3}$
- No error in 1/3 of all cases

- State-of-the-art routing algorithm for road networks³
- Speedup on road networks: over 40 000 wrt Dijkstra's algorithm
- Also effective in the time-dependent case⁴
- Karlsruhe Institute of Technology provides free source code of their implementation

³R. Geisberger et al.: Exact Routing in Large Road Networks Using Contraction Hierarchies, *Transportation Science*, 2012

⁴G. Batz et al.: Minimum Time-Dependent Travel Times with Contraction Hierarchies, Journal of Experimental Algorithmics, 2013

A^{\star} vs Dijkstra's Algorithm vs Contraction Hierarchies

	DIJKSTRA	CONTRACTION HIERARCHIES				A*		
Instanco	query	prep	query	speedup	prep	query	speedup	
instance	(ms)	(min)	(ms)	×	(min)	(ms)	×	
I-29-Dec-1	4.91	380.48	4.08	1.20	0.031	0.22	21.51	
I-34-Dec-1	4.91	451.82	4.27	1.15	0.030	0.24	20.24	
I-39-Dec-1	4.93	195.75	3.23	1.53	0.030	0.16	30.15	
I-29-Feb-1	4.90	414.78	3.94	1.25	0.031	0.21	22.96	
I-34-Feb-1	4.86	466.95	3.96	1.23	0.028	0.21	22.23	
I-39-Feb-1	4.92	184.20	3.01	1.63	0.029	0.15	31.50	
I-29-Mar-1	4.55	216.57	2.82	1.61	0.025	0.16	27.27	
I-34-Mar-1	4.55	189.18	2.92	1.55	0.026	0.18	24.38	
I-39-Mar-1	4.58	127.38	2.52	1.81	0.026	0.15	29.45	
I-29-Dec-3	4.36	312.40	2.67	1.63	0.026	0.19	22.03	
I-34-Dec-3	4.38	351.70	2.80	1.56	0.026	0.21	20.85	
I-39-Dec-3	4.38	160.20	2.30	1.90	0.026	0.14	30.87	
I-29-Feb-3	4.31	328.47	2.66	1.62	0.025	0.18	23.09	
I-34-Feb-3	4.28	372.15	2.92	1.47	0.027	0.19	21.68	
I-39-Feb-3	4.33	155.07	2.20	1.97	0.025	0.13	31.94	
I-29-Mar-3	4.22	179.45	2.31	1.82	0.022	0.14	28.39	
I-34-Mar-3	4.26	146.52	2.33	1.83	0.023	0.16	26.68	
I-39-Mar-3	4.26	96.80	2.03	2.10	0.023	0.13	31.02	
Summary								
Average	4.55	262.77	2.94	1.60	0.027	0.18	25.90	
Minimum	4.22	96.8	2.03	1.15	0.022	0.13	20.24	
Maximum	4.93	466.95	4.27	2.10	0.031	0.24	31.94	

Generalisation

• The previous 2D results hold true in the 3D case, too.

- The previous 2D results hold true in the 3D case, too.
- Instead of using A*, we compute an a-priori search space:

- The previous 2D results hold true in the 3D case, too.
- Instead of using A*, we compute an a-priori search space:
- Compute an upper bound solution, say its arrival time is *T*₀.

- The previous 2D results hold true in the 3D case, too.
- Instead of using A*, we compute an a-priori search space:
- Compute an upper bound solution, say its arrival time is *T*₀.
- A node v ∈ V is active iff it satisfies the inequality

- The previous 2D results hold true in the 3D case, too.
- Instead of using A*, we compute an a-priori search space:
- Compute an upper bound solution, say its arrival time is *T*₀.
- A node v ∈ V is active iff it satisfies the inequality

 $\underline{T}(P_{s}^{v}) + \underline{T}(P_{v}^{t}) \leq T_{0}.$

Figure 4: A-priori search space for LED-FRA. Source: Google Earth

- Benefit: this pruning also works for algorithms without heaps.
- Incorporation of overflight costs is also possible.

Thank You!

Reference: Blanco et al.: Solving Time-Dependent Shortest Path Problems on Airway Networks Using Super-Optimal Wind, ATMOS 2016 Proceedings, 2016, (Best Paper Award) Source: Google Earth