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Easy to manipulate and encode [12]1 15

Has 1073 states

Has long history of serving as testbed for
heuristic search

Baseline heuristic: Manhattan distance

Solved optimally with IDA* [Korf 1985]



Domains

15 puzzle
« 1073 states

 First solved by [Korf 85] with
IDA* and Manhattan distance

» Takes 53 seconds
24 puzzle
« 10724 states
 First solved by [Korf 96]
« Takes two days
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The year 1999

Richard
Korf

How do we find strong heuristics for the Tile Puzzle?

How can we combine knowledge from different PDBs?



Three ideas

1) Disjoint additive PDBs [AlJ 2002]

Statically-partitioned PDBs ( 2000)
Dynamically-partitioned-PDBs [JAIR 2004]
Vertex-cover table [never published] (2001)

2) Compressed PDBs

Entry compression (2004-2007)
Value compression (2017)
Bloom filters (2014)

Learning PDBs (2008)

3) Dual-lookups in PDBs and Inconsistency (2005)



Older work on PDBS

In the nineties
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Homomorphic Abstractions

Many search spaces can be abstracted by
merging nodes into abstract nodes

Distances from abstract spaces are lower
bounds for the original problem
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« A solution to the subproblem is a lower

1) PDBs for the 15-puzzie

[Culberson and Schaeffer 96]

* Many problems can be abstracted into
subproblems that must be also solved.

bound on the entire problem.

Idea was inspired by endgame
databases from Checkers




Pattern Databases heuristics

* A pattern database (PDB) is a lookup table that stores
solutions to all configurations of the sub-problem (patterns)

259 Million states
x | 3
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4(56 7 1013 States f’; x 3
7189 [11
12[13[14 15 %1_"3 1’; 1151\ # 1 h-valu1e8
Search atter > o
space space 3 18
4 17
5372 19

« This PDB is used as the h-value of the f=g+h of nodes during
the search



More than one PDBs

* If you have k of admissible heuristics (e.g.
PDBs), their max is also admissible,

. h=max(h1,h2... hk)
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# of occurrences

One large of a few small ones?

Given 1 giga byte of memory, how do we best use it with PDBs?
It is better to use many small PDBs and take their maximum instead of
one large PDB? [Holte, Newton, Felner, Meshulam and Furcy, ICAPS-2004]
It is better to be more precise on the low h-values than on the large h-values
d
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2) Rubik’s Cube [Korf 1997
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Finding Optimal Solutions to Rubik’s Cube The i G - acoamnuited op-

Using Pattern Databases mal salutlon lengths for subparts of a combinatora
prcblem was ﬁrst proposed by (C‘ulberscn and '%chaef-

Richard E. Korf
Computer Science Department
University of California, Los Angeles
Los Angeles, Ca. 90095
korf@cs.ucla.edu

Abstract
We have found the first optimal solutions to random
instances of Rubik’s Cube. The median optimal so-

Intion length appears to be 18 moves. The algorithm
used is iterative-deepening-A* (IDA*), with a lower-
bound heuristic function based on large memory-based
lookup fables, or “pattern databases” (Culberson and
Schaeffer 1996). These tables store the exact num-
ber of moves required to solve varicus subgoals of the

e e o o the b oo Large tables of heuristic values originated in the area

able cubies. We characterize the effectiveness of an
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rogram obeys a relation in whicl e product o e *

e A spne used equals the size of the atate space, store the exact value [:wm lose, or draw) of endgame
posn;mns This technique has bcnn used to great effect

gffer et al. 1992) in the game of checkers

context o

[ILae
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Thus, the speed of the program increases linearly with
the amount of memory available, As compuler mem- _ )
ories become larger and cheaper, we believe that this Figure 1: Rubik’s Cube
approach will become increasingly cost-effective.

T 7
Problem: -2 3x3x3 107M9 states S L L

Subproblem: - 2x2x2 88 Million states.

The max of 6-6-8 PDB

19



3) All pairwise heuristics

Finding Optimal Solutions to the Twenty-Four Puzzle

Richard E. Korf and Larry A. Taylor

Computer Science Department AAAl 96
University of California, Los Angeles >
Los Angeles, Ca. 90024
korf@es.ucla.edu, ltaylor@cs.ucla.edu

To see this problem more clearly, represent, a state as
a graph with a node for each tile; and an edge between
each pair of tiles, labelled with their pairwise distance.
We need to select a set, of edges from this graph, so that,
no two edges are connected to a common node, and the
sum of the labels of the selected edges 1s maximized.
This problem 1s called the maximum weighted match-
ing problem, and can be solved in O(n?) time, where
n 1s the number of nodes (Papadimitriou and Steiglitz
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Pairwise distance

goal | |1]2]

« Manhattan distance =2
 Pairwise distance =4
 Pairwise distance over MD = 2

21



i) Maximal Matching on the pairwise graph

e Mutual cost graph (MCG)

— Vertices: tiles
— Edges: pairs of tiles.
— Weights of edges: pairwise cost
(above MD) .
ﬂgorithm We can add 4+2=6 to MD

 Partition to disjoint pairs
e Perform Maximal Matching on the MCG

22



Maximal Matching on the pairwise graph

e Mutual cost graph (MCG)

— Vertices: tiles
— Edges: pairs of tiles.
— Weights of edges: pairwise cost
(above MD)
ﬂgorithm We can add 4+2=6 to MD

* Dynamic partition to disjoint pairs
. P4 Very related to "systematic par’ri’rioningﬂ
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My first contribution: 1999
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Weighted Vertex Cover

31211 4 2{ :2
2

Figure 2: Mutual cost graph for 3-way linear conflict

« MM gives 2

 However, each edge (x,y) is a
constraint in the form: X+Y22

* Yields a heuristic of 3
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Weighted vertex cover

Figure 2: Mutual cost graph for 3-way linear conflict

The h*H9 heuristic (Pommerening, Roger, and Helmert 2013)
uses linear programming to solve a similar set of constraints

We aim to work with integer values only.

. This yields a heuristic of 4 v



From pairs to triples and quadruples

* For triples {x,y,z}=4 we write

(X >2and Y = 2) or
2) or

* Now want the minimal assignments to tiles
that satisfy these constraints.

* This is called weighted vertex-cover
(ordinary vertex cover is a special case)
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Weighted vertex cover

« WVC is NP-complete but...for up to triples

AMD

WVC for our purposes was
solved rather fast!

— A number of disjoint connected components

— Can be solved incrementally while moving from
parent to child.
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Experimental Results:15 puzzle

# | Heuristic Function Value Nodes | Sec. | Nodes/sec | Memory
| | Manhattan 36.940 | 401,189,630 53 | 7.509,527 0
3 | MM: pairs 39411 | 21,211,091 13 | 1.581.848 1,000
4 | MM: pairs+triples 41.801 2.877.328 8 351.173 2.300
5 | WVC: pairs 40.432 0,983,886 10 059.896 1.000
6 | WVC: pairs+triples 42.792 707,476 5 139.376 2,300
7 | WVC: pairs+triples+quadruples || 43.990 110,394 9 11,901 78.800
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1) Disjoint Additive PDBs

*The 7-tile and 8-tile subproblems are disjoint:
-> each operator belongs to one subproblem only

2|3

1
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1. It is worth mentioning here that the o sse=tremtemtttre—trrr—tre—tor—the—tatestsapartitioned pattern

databases is not trivial@m backwards breadth-first search we treated this tile as a distinct tile tha

can move to any adjacent locatiom. I Tt torertror—t—e e impmret=tte=treTtITaT Tcal tlle was

moved to thetfespet—trtrmk=—trTat o oI We o one to T TenE i ot—tre—peth-tathat node. However,

r the pattern database tables we have only considered the locations of the real tiles as in@mo the
tables. We dId ot preserve -t oottt re—trerrde—rre—=terer= e, anonge all possible blank
locatierrs=T Order to save memory. In a sense, we have compressed the pattern databases accoressg

the location of the blank (see (Felner, Meshulam, Holte, & Korf, 2004) about compressing pa@
databasesT




Enhancements

« Symmetry: Reflection
about the main diagonal

7-8 7-8
* One can store just the addition over MD in the PDB

« These additions come in units of 2.
* This was called Delta heuristics [sturtevant & Felner 2017]

Very related to "interesting patterns” by
[Pommerening, Roger, and Helmert 20131
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Disjoint PDBs

Also called: Statically partitioned PDBs

15 puzzle

3-4-4-4 5-5-5 6-6-3 7-8

24 puzzle
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Experimental Results:15 puzzle

# | Heuristic Function Value Nodes | Sec. | Nodes/sec | Memory
| | Manhattan 36.940 | 401,189,630 53 | 7.509,527 0
3 | MM: pairs 30411 21.211.091 13 | 1.581.848 1.000
4 | MM: pairs+triples 41.801 2.877.328 8 351,173 2.300
5 | WVC: pairs 40.432 0.983.886 10 059.896 1.000
6 | WVC: pairs+triples 42.792 707,476 5 139,376 2,300
7T | WVC: pairs+triples+quadruples || 43.990 110,394 9 11,901 78.800
8 | PA: 5-5-5 41.560 3.090.405 | .540 | 5,722,922 3.145
9 | PA: 6-6-3 42.924 617,555 | .163 | 3.788.680 33,554
10 | PA:7-7-1 44.586 116,985 | .047 | 2.489.042 | 268.437

PA: 7-8

45.630

36,710

028

576.575
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3) Vertex-cover tables

» \We store a small number of rather large
overlapping PDBS

For example, we store 6 different 7-tile PDB

* Here we cannot solve WVC on the fly
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3) Vertex-cover tables

Instead we do it in a preprocessing phase

Assume we have 6 different PDBs each with g
different values

— T-tile PDB {0,2,4,6,8,10,12} |P1 P2 |P3 |P4 |P5 |P6[Val

2 2 4 6 2 8114
We have 69 combinations 2 4 0 2 4 6|12
4 0 8 4 6 0l10

We build a table with 69 rows

Each stores WVC for the corresponding entry.
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3) Vertex-cover tables

 In the preprocessing phase:
1. Fill the VCT table with the correct values

e For each node in the main search

1. Retrieve the PDB values for all stored groups

2. Use these values as indexes and lookup the relevant
entry in the VCT to retrieve the value of WVC.

3. Add this value to MD.
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3) Vertex-cover tables: generality

1) Number of entries is smaller than the
number of expected nodes.

2) Table can be built lazily

3) Other problems too.
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Experimental Results:15 puzzle

# | Heuristic Function Value Nodes | Sec. | Nodes/sec | Memory
[ | Manhattan 36.940 | 401,189,630 53 | 7,509,527 0
3 | MM: pairs 39.411 21,211,091 13 | 1,581,848 1,000
4 | MM: pairs+triples 41.801 2.877.328 8 351,173 2.300
5 | WVC: pairs 40.432 0.983.886 10 959,896 1.000
6 | WVC: pairs+triples 42.792 707,476 5 139.376 2.300
7 | WVC: pairs+triples+quadruples || 43.990 110,394 9 11,901 78.800
8 | PA: 5-5-5 41.560 3.090.405 | .540 | 5,722,922 3.145
9 | PA: 6-6-3 42.924 617,555 | .163 | 3.788.680 33,554
10 | PA:7-7-1 44.586 116,985 | .047 | 2,489,042 | 268,437
[1 | VCT: 7 6-tile PDBs 43.211 397.107 | .134 | 2.963.485 34,377
12 | VCT: 10 6-tile PDBs 43.485 242,186 | 115 | 2,105,965 | 332.806
13 | VCT: 5 7-tile PDBs 44.563 97,730 | .044 | 2.221,136 | 402,669
14 | VCT: 6 7-tile PDBs 44 531 76.634 | .037 | 2.071.189 | 419,548
————— — : = e
S | PA:7-8 45.630 36,710 | .028 | 1,377.630 | 576.575
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Experimental Results:24 puzzle

Nodes Time (seconds)

# Sol WVC PA VCT WVC PA VCT
l 95 306,958,148 2,031,102,635 [,377,159.819 1,757 [.446 1,063
2 06 | 65,125,210,009 211.884,984.525 158,889,554, 781 692,829 147 493 123,018
3 07 | 52.906,797.645 21,148,144 ,928 14,448,309,001 524,603 14,972 11,294
4 98 8,465,759,895 10,.991.471,966 0.262.519,107 712911 7.809 7,016
5 100 715,535,336 2.899.007,625 2.480.350,516 3.922 2,024 1,894
6 [01 | 10,415,838,041 103.460.814,368 86.134.496,298 151,083 74,100 65,252
7 104 | 46,196,984,340 106,321.592,792 85.774.231,083 717454 76,522 66,491
8 108 | 15,377,764,962 116,202,273, 788 83.209.058,152 82,180 81,643 64,424
9 [13 | 135,129,533,132 | 1.818.,055.616.606 | 1.476.665,302,180 747443 | 3,831,042 | 3,222,608
10 [14 | 726,455,970,727 | 1.519,052.821,943 | 1,331.681,205,551 | 4,214,591 | 3,320,098 | 3.390.445
Avg | 102.6 | 106,109,635,224 391.204,783.118 309.119,152.126 120,877 752,698 695,351

6-6-6-6
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General Additive PDBS

What about problems where each operator
moves more than one object?

This was addressed by [Yang, Holte, Culberson,
Zahavi, Felner JAIR 2008]

Cost splitting — split the costs among the
different (non-disjoint) sub-problems.

Location based costs — we only charge
the pattern that moved into a special
location.

Additivity was also used in planning.

— [pommerening et al.] 3



Compressing pattern database

[Felner et al AAAI-04, JAIR-2007]

 Entry Compression:
— Nearby entries in PDBs are highly correlated !!

 We can compress nearby entries by storing their
minimum in one entry.

Regular PDB compressed PDB Regular PDB compressed PDB
ol 6 [~-_ ol e
I ek e e 1] 6
D T et -=lo| 5 2| 5 3
3| 4 1] 3 3| 4 3
4| 3 7 4| 3
5| 3 5| 3

Compress by DIV 3 Compress by MOD 3

« We show that > most of the knowledge is preserved

« Consequences: Memory is saved, larger patterns can be
used = speedup in search is obtained. <8




Cligues in the pattern space

* The values in a PDB for
a clique are d or d+1

* |n permutation puzzles
cliques exist when only
one object moves to
another location.

« Usually they have nearby entries in the PDB
* A[4][4][4][4][4]

a®
000000
..........
. * L
.........
& "y

) | | ‘|-Aclique in TOH4
N
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Compressing cliques

Assume a clique of size K with values d or d+1

Store only one entry (instead of K) for the clique with
the minimum d. Lose at most 7.
— A[4][4][4][4][4] ==) A[4][4][4][4][1]

— Instead of 4*p we need only 4*(p-1) entries.

This can be generalized to a set of nodes with
diameter D. (for cliques D=1)

— Al4][4][4][4][4] Al4][4][4][1][1]
—

In general: compressing by k disks reduces memory

requirements from 4”p to 4”(p-k) i



TOHA4 results: 16 disks (14+2

PDB | H(s) Avg H D Nodes Time Mem MB
14/0 + 2 116 87.03 0 36,479,151 14.34 256
14/1 + 2 115 86.48 1 37,964,227 14.69 64
14/2 + 2 113 85.67 3 40,055,436 15.41 16
14/3 + 2 111 84.44 5 44,996,743 16.94 4
14/4 + 2 107 82.73 9 45,808,328 17.36 1
14/5 + 2 103 80.84 13 61,132,726 23.78 0.256

 Memory was reduced by a factor of 1000!!!
at a cost of only a factor of 2 in the search

effort.
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TOH4: larger versions

size PDB Type Avg H Nodes Time Mem

17 14/0 + 3 | static 81.5 >393,887,923 >421 256
17 14/0 + 3 | dynamic 87.0 238,561,590 2,501 256
17 15/1 + 2 | static 103.7 155,737,832 83 256
17 16/2 + 1 | static 123.8 17,293,603 7 256
18 16/2 + 2 | static 123.8 380,117,836 463 256

* For the 17 disks problem a speed up of
3 orders of magnitude is obtained!!!

* The 18 disks problem can be solved in

5 minutes!!

48




Tile Puzzles

Goal State
A|[B | Clique AlB AlB
C ” C D|C
D D

» Storing PDBs for the tile puzzle
* (Simple mapping) A multi dimensional array -
A[16][16][16][16][16] size=1.04Mb

* (Packed mapping) One dimensional array -
A[16*15*14*13*12] size = 0.52Mb.

* Time versus memory tradeoff !!
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15 puzzle results

* Aclique in the tile puzzle is of size 2.
* We compressed the last index by two -

A[16][16][16][16][8]

PDB| Type | compress Nodes Time Mem Avg H
1 7-8 | packed No 136,288 | 0.081 576,575 44.75
1+ 7-8 packed No 36,710 0.034 576,575 45.63
17-7-1 | packed No 464,977 0.232 57,657 43.64
17-7-1 simple No 464,977 0.058 536,870 43.64
17-7-1 simple Yes 565,881 | 0.069 268,435 43.02
2 7-7-1 simple Yes 147,336 0.021 536,870 43.98
2+ 7-7-1 | simple Yes 66,692| 0.016 536,870 44 .92
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Value Range Compression

[Sturtevant and Felner, AAAI-2017]

Value compression:

— When you have a large range of values partition them into disjoint
regions.

— Store a value for the entire region

For example for numbers 0...99
Partition to [0..9] [10..19] .... [90..99]
Store, 0, 10, 20 ... 90 for these regions.

You save many bits. Loss of information is small

Combination of entry and value compression proved useful
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VC2: Brute force -- 16 and 17 become 15
VC2h: Intelligent value compressing

EC2 (entry compression): two nearby entries

[,760MB S30MB 440MB
D Total V2 vC2, EC2 VC4, EC4
0 I 1 2 2 10,188,753 7
1 11 1 22 40
2 94 04 94 186 340
3 731 731 731 1,430 2,596
4 5,353 5,353 5,353 10,340 18,736
5 37,275 37,275 37,275 70,894 127,756
6 245,468 245,468 245,468 457,304 813,700
7 1,508,099 1,508,099 1,508,099 2,722,458 4,724,408
8 8,391,721 8,391,721 8,391,721 14,408,820 23,870,392
9 | 40,012,497 40,012,497 | 40,012,497 | 63,502,746 190,013,262 | 97,318,252

10 | 150,000,765 || 150,000,765 | 150,000,765 | 212,692,340 290,434,356
1 | 393,482,172 || 393,482,172 | 393,482,172 | 478,114,034 393,482,172 | 553,276,900
12 | 612,084,904 || 612,084,904 | 612,084,904 | 601,419,722 || 1,170,638,373 | 549,750,508
13 | 440,655,534 || 440,655,534 | 440,655,534 | 328,304,534 217,340,348
14 | 110,437,757 || 110437,757 | 110437757 | 59,883,892 26,009,144
15 7,389,524 7,460,178 7,389,524 2,721,910 634,464
16 70,633 70,654 11,924 616
17 21 2

Avg. 1.0 11.90 11.90 11.59 11.38 1.27




Combining both VC and EC

Memory EC | VC | VC-bits Nodes | Time
1 1 1 8 3.88M | 15.29
0.5 (A) 1 2 4 3.88M | 15.32
0.375 1 2.66 3 4.03M | 15.44
0.25 (B) 1 4 2 10.39M | 33.63
0.5 (A) 2 1 8 7.11M | 27.70
0.25 (B) 2 2 4 711M | 27.88
0.1875 2 2.66 3 7.37TM | 28.44
0.125 (C) 2 4 2 30.43M | 80.04
0.25 (B) 4 1 8 13.75M | 51.06
0.125 (©) 4 2 4 13.74M | 50.97
0.094 4 | 2.66 3 14.31M | 51.52
0.0625 4 4 2 30.48M | 77.68

Table 2: Results for (18-4)-TopSpin
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Using bloom filters

[Sturtevant and Felner, SoCS 2014]
Partial Pattern Databases (PPDBs)

[Anderson, Holte, and Schaeffer 2007]:

— only store the first D levels
— Any item >D will be treated as D+1

Bloom filters [1971]: performs membership test.

» Insert: a number of hash functions, each sets a bit.

e Check: lookup all bits of an item
« Small chance for false positive

Insert(x) Lookup(y) = not found

hash;(y) hash;(y)




PDBs with bloom filters

Level by level bloom filters

— Build a bloom filter for each of the D levels

— Lookup:

[terate on levels 1 from 1 to D{

If bloom(i)=True
set h=1

§
Set h=D+1

In case of a false positive
h is still admissible

We can compress ranges (levels)
too (like VRC)
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PDBs with bloom filters

Compressed PDB within a bloom filter

 Build one bloom filter for all values
 For each item store its value

e In case of a collision, store the minimum.

Lookup: look on all hash values and take the maximum

S S3 So

Figure 3: A min Bloom filter
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Experiments with bloom filters

Bloom Filters vs Min Compression

Min Bloom Filters
—— Min Compression

[—
N
-]

=== Bloom Filters (Lvl by Ivl)

Time (sec)
[—
-
S

N
-]

10 15 20 25 30
Memory (GB)
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Learning PDBs

[Samadi,Felner and Holte, ECAI-2008)

* Preprocessing:
— Build a PDB
— Use ANN to learn it.

— Build a side hash function that stored all the values that
were overestimated.

* During Search:
— Consult the hash table.
— Consult the ANN

 Enhancements: use Decision Tree to classify
Positive Delta 5



* Dual lookups in pattern databases

[Felner et al, IJCAI-05]
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Symmetries in PDBs

Symmetric lookups were already
performed by the first PDB paper of
[Culberson & Schaeffer 96]

examples

— Tile puzzles: reflect the tiles
about the main diagonal.

— Rubik’s cube: rotate the cube

We can take the maximum among the
different lookups

These are all geometrical symmetries
We suggest a new type of symmetry!!Go




Reqular and dual representation

» Reqular representation of a problem:
« Variables — objects (tiles, cubies etc,)
 Values — locations

* Dual representation:

 Variables — locations

« Values - objects

61



Reqular vs. Dual lookups in PDBs

* Regular question:

Where are tiles {2,3,6,7} and how
many moves are needed to gather
them to their goal locations?

* Dual question: 6|7
Who are the tiles in locations

{2,3,6,7} and how many moves

are needed to distribute them to
their goal locations?
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* Regular lookup: PDBI[8

* Dual lookup:



Reqular and dual in TopSpin

1123 (4 ]|5|6|7 |8 |9 Sl I e R
(a) The goal state of Top Spin (d) The goal pattern
Talalals[olsl71e] LI I=Islal ]
(b) locations 6-9 of (a) rrversad () The regular lookup for state (c)

LGOI GREEEE:

5

(c) locations 4-7 of (b) rversad (f) The dual lookup for state (c)

Figure 2: (9.4)-TopSpin states

» Regular lookup for C : PDBJ[1,2,3,7,0]
* Dual lookup for C:  PDBJ[1,2,3,8,9]
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Dual lookups

* Dual lookups are possible when there is a
symmetry between locations and objects:

—Each object is In only one location
and each location occupies only one

object.
 Good examples: TopSpin, Rubik’s cube
 Bad example: Towers of Hanol

* Problematic example: Tile Puzzles
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1) Inconsistent heuristics

[ Zahavi, et al. AAAI-2007,
Zhang et al. IJCAI 2009,
Felner et al. AlJ-2011 ]

Joint work with Uzl Zahauvi,
Zhifu Zhang,
Nathan Sturtevant,
Robert Holte and

Jonathan Schaeffer.
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Inconsistent heuristics
1

 Inconsistency sounds negafive

* “It is hard to concoct heuristics that are
aamissible but are inconsistent”

[Al book, Russel and Norvig 20035]

o “Almost all admissible heuristics are
consistent” [Korf, AAAI-2000]
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Consistent heuristics

A heuiristic is consistent if for every two
nodes n and m

For undirected graphs: |h(n)-h(m)| £ ¢(n,m)

* Intuition: h cannot change by more than
the change of g
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Inconsistent heuristics

A heuristic is inconsistent if for some
two nodes n and m

 The child is inconsistent
with its parent
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Reopening of nodes with A*

 Node dis expanded twice with A*!!
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* |[n the context of A* inconsistency
was considered a bad attribute

Extreme case: exponential number of

node expansions. n5(23), n1(11), n2(12), n1(10), n3(13),
n1(9), n2(10),n1(8), n4(14), n1(7), n2(8), n1(6), n3(9), n1(5), p2(6), n1(4).




Inconsistency in practical graphs

* The exponential worst-case behavior only
occurs if the edge weights and the heuristic
values grow exponentially.

« But, if all edges weights are < C then
A* will expand O(N?) states. [See the papers]
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Inconsistency and IDA*

* In the context of A* inconsistency was
considered a bad attribute

* Node re-opening is not a problem with
IDA™ because each path to a node is
examined anyway!!

* No overhead for inconsistent heuristics
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Pathmax

* The pathmax (PMX) method corrects
iInconsistent heuristics. [Mero 84 ,Marteli 77]

g=95
@ e The child inherits the f-value

Pathmax ony corrects the current path to be consistent,
not the entire graph [Holte, SoCS 2010]

h=2 >4
f=8->1
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Bidirectional pathmax (BPMX

[Felner, Zahavi, Schaeffer, Holte IJCAI-2005]

h-values
BPMX

= @
[ BPMX :>>

 Bidirectional pathmax: h-values are
propagated in both directions
decreasing by 1 in each edge.

— |f the IDA* threshold is 2 then with BPMX
the right child will not even be geqserated!!




BPMX within A*

BMPX(1)
*\We have a node p and its children n1, n2 ... nk at hand.
Let h’ be the largest heuristic among the children

For each child n we set

_ h(n)=max(h(n), h"-2) S\ —> /
*For the parent p we set
— h(p)=max(h(n),h’-1) @ @ ﬁ @ @ ﬁ

- Going deeper did not prove to be cost effective.
- BPMX() can be great or catastrophic. [See paper]
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Achieving inconsistent heuristics

1) Random selection of heuristics (out of K)

2) Dual evaluations

are inconsistent
[Zahavi et al. AAAI-2000]

3) Compressed pattern databases
In general — any partial heuristic is inconsistent.



More than one heuristic
A munber of different PDBs 7

 Symmetric lookups
— Tile puzzles: reflect the tiles
about the main diagonal. 7 | 8
— Rubik’s cube: rotate the cube

/ a4
L [ L
/
ff I’
/] /
// //
4




1) Randomizing a heuristic

Taking the maximum of K heuristics is
* Admissible
« Consistent

» Better than each of them
* Drawbacks: Overhead of K heuristics lookups
diminishing return.

Alternatively, we can randomize which
heuristic out of K to consult.

 Admissible

* Inconsistent
* Benefits: Only one look up. BPMX can be activated.
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Reqular and dual in TopSpin

1123 (4 ]|5|6|7 |8 |9 Sl I e R
(a) The goal state of Top Spin (d) The goal pattern
Talalals[olsl71e] LI I=Islal ]
(b) locations 6-9 of (a) rrversad () The regular lookup for state (c)

LGOI GREEEE:

5

(c) locations 4-7 of (b) rversad (f) The dual lookup for state (c)

Figure 2: (9.4)-TopSpin states

» Regular lookup for C : PDBJ[1,2,3,7,0]
* Dual lookup for C:  PDBJ[1,2,3,8,9]

80




Inconsistency of Dual lookups

Consistency of heuristics:
[h(a)-h(b)| <= c(a,b)

MTOP_SM” 1|2]3]4 5|9|8\7|6|

 Both
PDBJ"

C( b, C ) — 1 by locations -9 of (a) rversad
1[2[3]s[ofsT4]7Ts
ookups for B — Eﬂ
ic) locations 47 of (b mvarsad
2,3,4,5]1=0

* Regu

DDB[1,2,3,7,6]=1

* Dual lookup for C
°’DBJ[1,2,3,8,9]=2

ar lookup for C




Compressing pattern database
are inconsistent

Regular PDB compressed PDB Regular PDB compressed PDB
ol 6 [~ ol 6
1] O e 11 6
A R A s -=o| 5 2| 5 3
3 4 1] 3 3 4 1] 3
4l 3 7 4| 3
5| 3 5| 3

Compress by DIV 3 Compress by MOD 3

« 3 and 5 are inconsistent
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Rubik’s cube results

No Lookups Nodes Time
1 Regular 90,930,662 28.18
1 Dual 19,653,386 7.38
1 Dual+BPMX 8,315,116 3.24
1 Random 9,652,138 3.30
1 Random+BPMX 3,828,138 1.25
2 Regular 13,380,154 7.85
4 Regular 10,574,180 11.60

/-edges PDB over 1000 instances of depth 14
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Heuristic value distribution

<o Distribution of Heuristic Values (Rubik's Cube)
50_ ______ === Regular Lookup | | | | E |
]| — Dual Lookup
40—5 ------ === Random Lookup
. 1 | — Static Distribution
0 Jo e e
- 30§
&2 ]
20_; ....................................................................................................................

Heuristic Value

Notice that all these heuristics have the
same average value 85



Tile puzzle results

No Lookups Nodes Time
1 Regular 136,289 0.081
1 Dual+BPMX 247,299 0.139
1 Random+BPMX 44,829 0.029
2 Regular+reflected 36,130 0.034
2 2 Random+BPMX 26,862 0.025
3 3 Random+BPMX 21,425 0.026
4 All 4 18,601 0.022

/-8 additive PDB over 1000 instances
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summary

 PDBs are very exciting
* Still ongoing direction
* Many future ideas
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