Optimum Search Schemes for

Approximate String Matching Using Bidirectional FM-Index

Kiavash Kianfar¹ Christopher Pockrandt² Bahman Torkamandi¹ Haochen Luo¹ Knut Reinert²

¹Texas A&M University, College Station, TX, USA

²Freie Universität, Berlin, Germany

slides by Kiavash Kianfar

Introduction

Approximate String Matching (ASM) problem

Given

- a text of length T,
- a string (read) of length R,
- an alphabet of size σ ,
- and number of errors (Hamming or edit distance), K,

find substrings in the text whose (Hamming or edit) distance to the read is at most K.

Introduction

Approximate String Matching (ASM) problem

Given

- a text of length T,
- a string (read) of length R,
- an alphabet of size σ ,
- and number of errors (Hamming or edit distance), K,

find substrings in the text whose (Hamming or edit) distance to the read is at most K.

• Fundamental problem in computer science with numerous applications, especially in Bioinformatics

Introduction

Approximate String Matching (ASM) problem

Given

- a text of length T,
- a string (read) of length R,
- an alphabet of size σ ,
- and number of errors (Hamming or edit distance), K,

find substrings in the text whose (Hamming or edit) distance to the read is at most K.

- Fundamental problem in computer science with numerous applications, especially in Bioinformatics
- Indexing
 - (Enhanced) suffix array [Manber & Myers, 1990, Abouelhoda et al., 2004]
 - Affix array [Maaß, 2003, Strothmann, 2004]
 - FM-index [Ferragina & Manzini, 2000] based on BWT [Burrows & Wheeler, 1994]

- Assume Hamming distance
- Any path from root to a leaf represents a mismatch pattern.
- Assume the text contains all possible read mismatch patterns
- Then, total computational effort: Linear function of number of edges

How to reduce the number of edges but not miss any read mismatch pattern?

```
[Lam et al., 2009]
```

- Introduced bidirectional FM index
- Search can start anywhere in the read and progress left or right in any contiguous order
- Proposed partitioning the read and searching them in different orders to cover all partition mismatch patterns

[Kucherov et al., 2016]

- Formalized and generalized this idea
- Introduced the concept of Search Schemes

Bidirectional FM-Index and Search Schemes

		P	1	Р	2	P	3		
K=2	R=6	а	b	b	а	а	а		
		F	0 1	P ()	F	23 D D		
Partition				0	1	ן ר		0	
Mismatch Patterns				1	1	L		0	
			1	()		1		
			0	1	L		1		
			2	()		0		
			0	2	2		0		
			0	()		2		

σ=2; ∑={a,b}

Bidirectional FM-Index and Search Schemes

Bidirectional FM-Index and Search Schemes

•
$$S = \{(\pi_s, L_s, U_s), s = 1, \dots, S\}$$

• π_s : a permutation of 1, ..., P, where P is number of pieces in the partition

- L_s : lower bound on the cumulative No. of mismatches, (string of P numbers)
- U_s : upper bound on the cumulative No. of mismatches, (string of P numbers)

Optimal Search Scheme Problem

What is the search scheme that:

- minimizes number of steps in ASM-B (ASM using bidirectional FM-index)
- and ensures all partition mismatch patterns are covered?

MIP for Optimal Search Scheme Problem

MIP to Solve Optimal Search Scheme Problem

- A general Mixed Integer Programming (MIP) approach to directly solve the optimization problem.
- finds the exact optimal solution to Optimal Seach Scheme problem for Hamming distance and equal-size pieces.
- Takes K, R, P, and an upper bound on S, as input
- $\bullet\,$ Provides (π_s,L_s,U_s) of all searches in the optimal scheme, as output
- $\bullet\,$ It optimizes across all search schemes with at most S searches.

Optimal Scheme for Our Little Example

Optimal Scheme for Our Little Example

• 62 edges \Rightarrow 71 edges \Rightarrow 59 edges (Optimal)

Total Number of Edges: Backtracking vs. Optimal Scheme

Distance	Search Scheme	K = 1		K = 2		K = 3		K = 4	
Distance	Search Scheme	Edges	Factor	Edges	Factor	Edges	Factor	Edges	Factor
	Backtracking	15,554	1.00	1,560,854	1.00	116,299,379	1.00	6,862,924,649	1.00
Homming	Optimal $(P = K + 1)$	8,004	0.51	892,769	0.57	67,888,328	0.58	4,064,852,156	0.59
namming	Optimal $(P = K + 2)$	8,922	0.57	854,303	0.55	65,116,676	0.56	3,916,700,994	0.57
	Optimal $(P = K + 3)$	8,004	0.51	835,213	0.54	64,060,718	0.55	3,887,857,820	0.57
	Backtracking	41,208	1.00	11,154,036	1.00	2,264,515,748	1.00	367,846,294,116	1.00
E dia	Optimal $(P = K + 1)$	20,908	0.51	6,315,779	0.57	1,299,709,022	0.57	213,296,122,595	0.58
Edit	Optimal $(P = K + 2)$	23,356	0.57	6,025,907	0.54	1,246,126,103	0.55	205,509,484,572	0.56
	Optimal $(P = K + 3)$	20,908	0.51	5,892,667	0.53	1,226,903,544	0.54	203,270,363,390	0.55

Total Number of Edges: Backtracking vs. Optimal Scheme

Distance	Search Scheme	K = 1		K = 2		K = 3		K = 4	
Distance		Edges	Factor	Edges	Factor	Edges	Factor	Edges	Factor
	Backtracking	15,554	1.00	1,560,854	1.00	116,299,379	1.00	6,862,924,649	1.00
Hamming	Optimal $(P = K + 1)$	8,004	0.51	892,769	0.57	67,888,328	0.58	4,064,852,156	0.59
namming	Optimal $(P = K + 2)$	8,922	0.57	854,303	0.55	65,116,676	0.56	3,916,700,994	0.57
	Optimal $(P = K + 3)$	8,004	0.51	835,213	0.54	64,060,718	0.55	3,887,857,820	0.57
	Backtracking	41,208	1.00	11,154,036	1.00	2,264,515,748	1.00	367,846,294,116	1.00
E dia	Optimal $(P = K + 1)$	20,908	0.51	6,315,779	0.57	1,299,709,022	0.57	213,296,122,595	0.58
Edit	Optimal $(P = K + 2)$	23,356	0.57	6,025,907	0.54	1,246,126,103	0.55	205,509,484,572	0.56
	Optimal $(P = K + 3)$	20,908	0.51	5,892,667	0.53	1,226,903,544	0.54	203,270,363,390	0.55

• Reduction in total number of edges up to a factor of 0.51

Distance	Search Scheme	K = 1		K = 2		K = 3		K = 4	
Distance	Search Scheme	Edges	Factor	Edges	Factor	Edges	Factor	Edges	Factor
	Backtracking	15,554	1.00	1,560,854	1.00	116,299,379	1.00	6,862,924,649	1.00
Hamming	Optimal $(P = K + 1)$	8,004	0.51	892,769	0.57	67,888,328	0.58	4,064,852,156	0.59
паппппп	Optimal $(P = K + 2)$	8,922	0.57	854,303	0.55	65,116,676	0.56	3,916,700,994	0.57
	Optimal $(P = K + 3)$	8,004	0.51	835,213	0.54	64,060,718	0.55	3,887,857,820	0.57
	Backtracking	41,208	1.00	11,154,036	1.00	2,264,515,748	1.00	367,846,294,116	1.00
E dia	Optimal $(P = K + 1)$	20,908	0.51	6,315,779	0.57	1,299,709,022	0.57	213,296,122,595	0.58
Edit	Optimal $(P = K + 2)$	23,356	0.57	6,025,907	0.54	1,246,126,103	0.55	205,509,484,572	0.56
	Optimal $(P = K + 3)$	20,908	0.51	5,892,667	0.53	1,226,903,544	0.54	203,270,363,390	0.55

Total Number of Edges: Backtracking vs. Optimal Scheme

- Reduction in total number of edges up to a factor of 0.51
- Optimal solution for Hamming distance has the same improvement effect for Edit distance problem.

Distance	Search Scheme	K = 1		K = 2		K = 3		K = 4	
Distance	Search Scheme	Edges	Factor	Edges	Factor	Edges	Factor	Edges	Factor
	Backtracking	15,554	1.00	1,560,854	1.00	116,299,379	1.00	6,862,924,649	1.00
Hamming	Optimal $(P = K + 1)$	8,004	0.51	892,769	0.57	67,888,328	0.58	4,064,852,156	0.59
паппппп	Optimal $(P = K + 2)$	8,922	0.57	854,303	0.55	65,116,676	0.56	3,916,700,994	0.57
	Optimal $(P = K + 3)$	8,004	0.51	835,213	0.54	64,060,718	0.55	3,887,857,820	0.57
	Backtracking	41,208	1.00	11,154,036	1.00	2,264,515,748	1.00	367,846,294,116	1.00
E dia	Optimal $(P = K + 1)$	20,908	0.51	6,315,779	0.57	1,299,709,022	0.57	213,296,122,595	0.58
Edit	Optimal $(P = K + 2)$	23,356	0.57	6,025,907	0.54	1,246,126,103	0.55	205,509,484,572	0.56
	Optimal $(P = K + 3)$	20,908	0.51	5,892,667	0.53	1,226,903,544	0.54	203,270,363,390	0.55

Total Number of Edges: Backtracking vs. Optimal Scheme

- Reduction in total number of edges up to a factor of 0.51
- Optimal solution for Hamming distance has the same improvement effect for Edit distance problem.
- Not all read mismatch patterns in reference genome; Search-in-index speed-up achieved by optimal search schemes for real data can be much more significant.

st.	Search Tool	K = 1		K = 2		K = 3	
Ö	Search 100	Time	Factor	Time	Factor	Time	Factor
Ľ.	Backtracking	22.80s	1.00	269.24s	1.00	2417.06s	1.00
m	Optimal-scheme bidirect. $(P = K + 1)$	7.73s	2.95	19.78s	13.61	74.62s	32.39
Ξ	Optimal-scheme bidirect. $(P = K + 2)$	7.39s	3.09	18.81s	14.31	68.69s	35.19
	Backtracking	43.59s	1.00	1245.70s	1.00	27889.40s	1.00
dit	Optimal-scheme bidirect. $(P = K + 1)$	11.21s	3.89	120.70s	10.32	1338.61s	20.83
	Optimal-scheme bidirect. $(P = K + 2)$	10.66s	4.09	112.23s	11.10	1307.23s	21.33

Search in Index for all occurrences of 100,000 Illumina reads (R = 101) in human reference genome (hg38)

st.	Search Tool	K = 1		K = 2		K = 3	
Ö	Search 100	Time	Factor	Time	Factor	Time	Factor
Ľ.	Backtracking	22.80s	1.00	269.24s	1.00	2417.06s	1.00
m	Optimal-scheme bidirect. $(P = K + 1)$	7.73s	2.95	19.78s	13.61	74.62s	32.39
Ξ	Optimal-scheme bidirect. $(P = K + 2)$	7.39s	3.09	18.81s	14.31	68.69s	35.19
	Backtracking	43.59s	1.00	1245.70s	1.00	27889.40s	1.00
dit	Optimal-scheme bidirect. $(P = K + 1)$	11.21s	3.89	120.70s	10.32	1338.61s	20.83
	Optimal-scheme bidirect. ($P = K + 2$)	10.66s	4.09	112.23s	11.10	1307.23s	21.33

Search in Index for all occurrences of 100,000 Illumina reads (R = 101) in human reference genome (hg38)

• Speed-up of up to 35 times

st.	Search Tool	K = 1		K = 2		K = 3	
Ö	Search Tool	Time	Factor	Time	Factor	Time	Factor
Ľ.	Backtracking	22.80s	1.00	269.24s	1.00	2417.06s	1.00
m	Optimal-scheme bidirect. $(P = K + 1)$	7.73s	2.95	19.78s	13.61	74.62s	32.39
Ξ	Optimal-scheme bidirect. $(P = K + 2)$	7.39s	3.09	18.81s	14.31	68.69s	35.19
	Backtracking	43.59s	1.00	1245.70s	1.00	27889.40s	1.00
Edit	Optimal-scheme bidirect. $(P = K + 1)$	11.21s	3.89	120.70s	10.32	1338.61s	20.83
ш	Optimal-scheme bidirect. ($P = K + 2$)	10.66s	4.09	112.23s	11.10	1307.23s	21.33

Search in Index for all occurrences of 100,000 Illumina reads (R = 101) in human reference genome (hg38)

- Speed-up of up to 35 times
- Hamming distance optimal scheme very effective for edit distance as well.

- $\bullet\,$ Can we eliminate the input variables S and P
- Improve MIP formulation (cuts, symmetry elimination)
- Is the optimal solution always a partition of the mismatch patterns?
- What is the best point to stop search in index and start in-text verification?

Optimal Search Schemes

Optimal search schemes are available in our paper for community use

	K = 1	K = 2	K = 3	K = 4
	(12.00.01)	(123, 002, 012)	(1234,0003,0233)	(12345, 00004, 03344)
Optimal $(P = K + 1)$	(12, 00, 01) (21, 01, 01)	(321, 000, 022)	(2341,0000,1223)	(23451,00000,22334)
	(21,01,01)	(231, 011, 012)	(3421,0022,0033)	(54321, 00033, 00444)
	(192.001.001)	(2134,0011,0022)	(12345,00022,00333)	(123456, 000004, 033344)
Optimal $(P = K + 2)$	(123,001,001) (321,000,011)	(3214, 0000, 0112)	(43215,00000,11223)	(234561,000000,222334)
		(4321, 0002, 0122)	(54321, 00003, 02233)	(654321, 000033, 004444)
	(1924,0000,0011)	(21345, 00011, 00222)	(123456,000003,022233)	(1234567, 0111111, 3333334)
Optimal $(P = K + 3)$	(1234,0000,0011) (4321,0001,0011)	(43215, 00000, 00112)	(234561, 000000, 111223)	(1234567, 0000000, 0044444)
		(54321, 00002, 01122)	(654321, 000022, 003333)	(7654321, 0000004, 0333344)

Thank you!

Thanks to

- Texas A&M University High Performance Computing Facility
- Max-Planck Research School for Computational Biology and Scientific Computing

References i

- [Abouelhoda et al., 2004] Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms 2(1) (2004) 53–86
- [Burrows & Wheeler, 1994] Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Technical Report 124, Digital SRC Research Report (1994)
- [Ferragina & Manzini, 2000] Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: FOCS '00. (2000) 390–398
- [Kucherov et al., 2016] Kucherov, G., Salikhov, K., Tsur, D.: Approximate string matching using a bidirectional index. Theoretical Computer Science 638 (2016) 145–158
- [Lam et al., 2009] Lam, T.W., Li, R., Tam, A., Wong, S., Wu, E., Yiu, S.M.: High throughput short read alignment via bi-directional bwt. In: IEEE BIBM '09. 31–36
- [Li & Durbin, 2009] Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14) (2009) 1754–1760

[Maaß, 2003] 11. Maaß, M.G.: Linear bidirectional on-line construction of affix trees. Algorithmica 37(1) (2003) 43-74

References ii

- [Manber & Myers, 1990] Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches. In: SODA '90. (1990) 319–327
- [Pockrandt et al., 2017] Pockrandt, C., Ehrhardt, M., Reinert, K.: EPR-Dictionaries: A Practical and Fast Data Structure for Constant Time Searches in Unidirectional and Bidirectional FM Indices. In: RECOMB '17. (2017) 190–206
- [Reinert et al., 2015] Reinert, K., Langmead, B., Weese, D., Evers, D.J.: Alignment of Next-Generation Sequencing Reads. Annual review of genomics and human genetics 16 (2015) 133–151
- [Siragusa, 2015] Siragusa, E.: Approximate string matching for high-throughput sequencing. PhD thesis, Freie Universität Berlin (2015)
- [Strothmann, 2004] Strothmann, D.: The affix array data structure and its applications to RNA secondary structure analysis. Theoretical Computer Science 389(1-2) (2007) 278–294
- [Vroland et al., 2016] Vroland, C., Salson, M., Bini, S., Touzet, H.: Approximate search of short patterns with high error rates using the 01*0 lossless seeds. Journal of Discrete Algorithms (2016) 3–16

MIP Main Variables

- $n_{s,l,d}$: Number of edges at level l of the trie of search s with d cumulative mismatches
- $x_{s,i,j}$: Assignment of piece j to position (iteraion) i in search s
- $L_{s,i}$: Lowerbound on number of cumulative mistmatches for search s at iteration i
- $\bullet \ U_{s,i}$: Upperbound on number of cumulative mistmatches for search s at iteration i

MIP Objective Function

min
$$\sum_{s=1}^{\overline{S}} \sum_{l=1}^{R} \sum_{d=0}^{K} n_{s,l,d}$$

- Minimize total number of edges.
- [Kucherov et al., 2016] presented a weighting of edges assuming read and text are randomly and independently drawn from the alphabet.
- For ASM of DNA sequence reads to reference genomes, this is far from reality.
- Currently, it is not known how to weight, so we used total number of edges.
- Our MIP can be easily modified to incorporate any weighting scenario.

MIP Constraints

subject to

$$\sum_{i=1}^{P} x_{s,i,j} = 1$$
 for all s and j (1)
$$\sum_{j=1}^{P} x_{s,i,j} = 1$$
 for all s and i (2)

$$\sum_{h=1}^{i} x_{s,h,j} - \sum_{h=1}^{i} x_{s,h,j-1} = t_{s,i,j}^{+} - t_{s,i,j}^{-} \qquad \text{for all } s, i = 2, \dots, P-1, j = 1, \dots, P+1 \quad (3)$$

$$\sum_{j=1}^{P+1} (t_{s,i,j}^{+} + t_{s,i,j}^{-}) = 2 \qquad \text{for all } s, i = 2, \dots, P-1 \quad (4)$$

- Constraints (1)-(2) make sure one-to-one assignment of pieces to iterations.
- Constraints (3)-(4) ensure connectivity of pieces.

MIP Constraints

$$\begin{aligned} d - (L_{s, \lceil \frac{l}{m} \rceil} - m \lceil \frac{l}{m} \rceil + l) + 1 &\leq (R+1)\underline{z}_{s,l,d} & \text{for all } s, l, \text{ and } d \ (5) \\ U_{s, \lceil \frac{l}{m} \rceil} + 1 - d &\leq (K+1)\overline{z}_{s,l,d} & \text{for all } s, l, \text{ and } d \ (6) \\ \binom{l}{d}(\sigma - 1)^d(\overline{z}_{s,l,d} + \underline{z}_{s,l,d} - 2) &\leq n_{s,l,d} - n_{s,l-1,d} - (\sigma - 1)n_{s,l-1,d-1} & \text{for all } s, l, \text{ and } d \ (7) \\ L_{s,i} &\leq L_{s,i+1} & \text{for all } s, \text{ and } i = 1, \dots, P - 1 \ (8) \\ U_{s,i} &\leq U_{s,i+1} & \text{for all } s, \text{ and } i = 1, \dots, P - 1 \ (9) \end{aligned}$$

- Constraints (5)-(7) enforce calculation of $n_{s,l,d}$ based on recursive equation $n_{s,l,d} = n_{s,l,d} + (\sigma 1)n_{s,l-1,d-1}$ [Kucherov et al., 2016].
- Constraints (8)-(9) ensure $L_{s,i}$ and $U_{s,i}$ are non-decreasing.

MIP Constraints

$$L_{s,i} + K(\lambda_{q,s} - 1) \leq \sum_{h=1}^{i} \sum_{j=1}^{P} a_{q,j} x_{s,h,j} \leq U_{s,i} + K(1 - \lambda_{q,s})$$
 for all q, s , and i (10)
$$\sum_{s=1}^{\overline{S}} \lambda_{q,s} \geq 1$$
 for all q (11)

$$x_{1PP} = 1 \tag{12}$$

$$\sum_{t=s}^{\overline{S}} \sum_{k=1}^{j-1} x_{t,1,k} \le (\overline{S} - s + 1)(1 - x_{s,1,j})$$
 for all s and $j = 2, \dots, P$ (13)
$$\sum_{j=1}^{P-i+1} x_{sij} + \sum_{j=i}^{P} x_{sij} = 1$$
 for all s and $i \ge \lceil P/2 \rceil + 1$ (14)

- Constraints (10)-(11) ensure search scheme covers all partition mismatch patterns.
- Constraints (12)-(14) eliminate some symmetry in solution space.
- Constraints (15)-(17) set the sign and type of variables.