
Optimum Search Schemes for

Approximate String Matching Using Bidirectional FM-Index

Kiavash Kianfar1

Christopher Pockrandt2

Bahman Torkamandi1

Haochen Luo1

Knut Reinert2

1Texas A&M University, College Station, TX, USA

2Freie Universität, Berlin, Germany

slides by Kiavash Kianfar

1/12

Introduction

Approximate String Matching (ASM) problem

Given

a text of length T ,

a string (read) of length R,

an alphabet of size σ,

and number of errors (Hamming or edit distance), K,

find substrings in the text whose (Hamming or edit) distance to the read is at
most K.

Fundamental problem in computer science with numerous applications,
especially in Bioinformatics

Indexing
• (Enhanced) suffix array [Manber & Myers, 1990, Abouelhoda et al., 2004]
• Affix array [Maaß, 2003, Strothmann, 2004]
• FM-index [Ferragina & Manzini, 2000] based on BWT [Burrows & Wheeler, 1994]

2/12

Introduction

Approximate String Matching (ASM) problem

Given

a text of length T ,

a string (read) of length R,

an alphabet of size σ,

and number of errors (Hamming or edit distance), K,

find substrings in the text whose (Hamming or edit) distance to the read is at
most K.

Fundamental problem in computer science with numerous applications,
especially in Bioinformatics

Indexing
• (Enhanced) suffix array [Manber & Myers, 1990, Abouelhoda et al., 2004]
• Affix array [Maaß, 2003, Strothmann, 2004]
• FM-index [Ferragina & Manzini, 2000] based on BWT [Burrows & Wheeler, 1994]

2/12

Introduction

Approximate String Matching (ASM) problem

Given

a text of length T ,

a string (read) of length R,

an alphabet of size σ,

and number of errors (Hamming or edit distance), K,

find substrings in the text whose (Hamming or edit) distance to the read is at
most K.

Fundamental problem in computer science with numerous applications,
especially in Bioinformatics

Indexing
• (Enhanced) suffix array [Manber & Myers, 1990, Abouelhoda et al., 2004]
• Affix array [Maaß, 2003, Strothmann, 2004]
• FM-index [Ferragina & Manzini, 2000] based on BWT [Burrows & Wheeler, 1994]

2/12

Search in FM-Index: Backtracking (Unidirectional)

a b b a a a

a

b

b

a

a

a

σ=2; ∑={a,b}
R=6

K=0

a

b

b

a

a

a

Read

3/12

Search in FM-Index: Backtracking (Unidirectional)

a b b a a a

a

b

b

a

a

a

σ=2; ∑={a,b} R=6

K=1Read

a
b

a

a

b

b a

b

a

a

b

a

b

3/12

Search in FM-Index: Backtracking (Unidirectional)

a b b a a a

a

b

b

a

a

a

σ=2; ∑={a,b} R=6

K=2Read

a
b

a

a

b

b a
b

b

a

a

b

a

b

62 Edges

Assume Hamming distance

Any path from root to a leaf represents a mismatch pattern.

Assume the text contains all possible read mismatch patterns

Then, total computational effort: Linear function of number of edges 3/12

Search in FM-Index: Backtracking (Unidirectional)

a b b a a a

a

b

b

a

a

a

σ=2; ∑={a,b} R=6

K=2Read

a
b

a

a

b

b a
b

b

a

a

b

a

b

62 Edges

How to reduce the number of edges

but not miss any read mismatch pattern?

3/12

Bidirectional FM-Index and Search Schemes

[Lam et al., 2009]

Introduced bidirectional FM index

Search can start anywhere in the read and progress left or right in any
contiguous order

Proposed partitioning the read and searching them in different orders to
cover all partition mismatch patterns

[Kucherov et al., 2016]

Formalized and generalized this idea

Introduced the concept of Search Schemes

4/12

Bidirectional FM-Index and Search Schemes

P1 P2 P3

a b b a a a σ=2; ∑={a,b} R=6K=2

Partition
Mismatch
Patterns

P1 P2 P3

00 0

01 0

10 0

00 1

11 0

01 1

10 1

02 0

20 0

00 2

5/12

Bidirectional FM-Index and Search Schemes

sf =(123,000,012)

P1

P3

P2

P2

P1

P3P2

P1

P3

P1 P2 P3

a b b a a a

a

b

b

a

a

a

σ=2; ∑={a,b} R=6K=2

Read

{000, 001, 010, 011, 002} {001, 100, 101, 200}

sbi =(231,001,012)

Partition mismatch

patterns (P1P2P3)
{000, 010, 100, 110, 020, 200}

sb=(321,000,022)

71 Edges

S = {(πs, Ls, Us), s = 1, . . . , S}
πs: a permutation of 1, ..., P , where P is number of pieces in the partition
Ls: lower bound on the cumulative No. of mismatches, (string of P numbers)
Us: upper bound on the cumulative No. of mismatches, (string of P numbers)

6/12

Bidirectional FM-Index and Search Schemes

sf =(123,000,012)

P1

P3

P2

P2

P1

P3P2

P1

P3

P1 P2 P3

a b b a a a

a

b

b

a

a

a

σ=2; ∑={a,b} R=6K=2

Read

{000, 001, 010, 011, 002} {001, 100, 101, 200}

sbi =(231,001,012)

Partition mismatch

patterns (P1P2P3)
{000, 010, 100, 110, 020, 200}

sb=(321,000,022)

71 Edges

S = {(πs, Ls, Us), s = 1, . . . , S}
πs: a permutation of 1, ..., P , where P is number of pieces in the partition
Ls: lower bound on the cumulative No. of mismatches, (string of P numbers)
Us: upper bound on the cumulative No. of mismatches, (string of P numbers) 6/12

Optimal Search Scheme Problem

Optimal Search Scheme Problem

What is the search scheme that:

minimizes number of steps in ASM-B (ASM using bidirectional FM-index)

and ensures all partition mismatch patterns are covered?

7/12

MIP for Optimal Search Scheme Problem

MIP to Solve Optimal Search Scheme Problem

A general Mixed Integer Programming (MIP) approach to directly solve
the optimization problem.

finds the exact optimal solution to Optimal Seach Scheme problem for
Hamming distance and equal-size pieces.

Takes K, R, P , and an upper bound on S, as input

Provides (πs, Ls, Us) of all searches in the optimal scheme, as output

It optimizes across all search schemes with at most S searches.

8/12

Optimal Scheme for Our Little Example

sf =(123,002,012) sbi =(231,011,012)

P1

P3

P2

P2

P1

P3

sb=(321,000,022)

P2

P1

P3

P1 P2 P3

a b b a a a

a

b

b

a

a

a

σ=2; ∑={a,b} R=6K=2

Read

{000, 010, 100, 110, 020, 200}Partition mismatch
patterns P1P2P3

{011, 002} {001, 101}

59 Edges

9/12

Optimal Scheme for Our Little Example

sf =(123,002,012) sbi =(231,011,012)

P1

P3

P2

P2

P1

P3

sb=(321,000,022)

P2

P1

P3

P1 P2 P3

a b b a a a

a

b

b

a

a

a

σ=2; ∑={a,b} R=6K=2

Read

{000, 010, 100, 110, 020, 200}Partition mismatch
patterns P1P2P3

{011, 002} {001, 101}

59 Edges

62 edges ⇒ 71 edges ⇒ 59 edges (Optimal)

9/12

Computational Comparison

Total Number of Edges: Backtracking vs. Optimal Scheme

Distance Search Scheme
K = 1 K = 2 K = 3 K = 4

Edges Factor Edges Factor Edges Factor Edges Factor

Hamming

Backtracking 15,554 1.00 1,560,854 1.00 116,299,379 1.00 6,862,924,649 1.00

Optimal (P = K + 1) 8,004 0.51 892,769 0.57 67,888,328 0.58 4,064,852,156 0.59

Optimal (P = K + 2) 8,922 0.57 854,303 0.55 65,116,676 0.56 3,916,700,994 0.57

Optimal (P = K + 3) 8,004 0.51 835,213 0.54 64,060,718 0.55 3,887,857,820 0.57

Edit

Backtracking 41,208 1.00 11,154,036 1.00 2,264,515,748 1.00 367,846,294,116 1.00

Optimal (P = K + 1) 20,908 0.51 6,315,779 0.57 1,299,709,022 0.57 213,296,122,595 0.58

Optimal (P = K + 2) 23,356 0.57 6,025,907 0.54 1,246,126,103 0.55 205,509,484,572 0.56

Optimal (P = K + 3) 20,908 0.51 5,892,667 0.53 1,226,903,544 0.54 203,270,363,390 0.55

Reduction in total number of edges up to a factor of 0.51

Optimal solution for Hamming distance has the same improvement effect for

Edit distance problem.

Not all read mismatch patterns in reference genome; Search-in-index speed-up

achieved by optimal search schemes for real data can be much more significant.

10/12

Computational Comparison

Total Number of Edges: Backtracking vs. Optimal Scheme

Distance Search Scheme
K = 1 K = 2 K = 3 K = 4

Edges Factor Edges Factor Edges Factor Edges Factor

Hamming

Backtracking 15,554 1.00 1,560,854 1.00 116,299,379 1.00 6,862,924,649 1.00

Optimal (P = K + 1) 8,004 0.51 892,769 0.57 67,888,328 0.58 4,064,852,156 0.59

Optimal (P = K + 2) 8,922 0.57 854,303 0.55 65,116,676 0.56 3,916,700,994 0.57

Optimal (P = K + 3) 8,004 0.51 835,213 0.54 64,060,718 0.55 3,887,857,820 0.57

Edit

Backtracking 41,208 1.00 11,154,036 1.00 2,264,515,748 1.00 367,846,294,116 1.00

Optimal (P = K + 1) 20,908 0.51 6,315,779 0.57 1,299,709,022 0.57 213,296,122,595 0.58

Optimal (P = K + 2) 23,356 0.57 6,025,907 0.54 1,246,126,103 0.55 205,509,484,572 0.56

Optimal (P = K + 3) 20,908 0.51 5,892,667 0.53 1,226,903,544 0.54 203,270,363,390 0.55

Reduction in total number of edges up to a factor of 0.51

Optimal solution for Hamming distance has the same improvement effect for

Edit distance problem.

Not all read mismatch patterns in reference genome; Search-in-index speed-up

achieved by optimal search schemes for real data can be much more significant.

10/12

Computational Comparison

Total Number of Edges: Backtracking vs. Optimal Scheme

Distance Search Scheme
K = 1 K = 2 K = 3 K = 4

Edges Factor Edges Factor Edges Factor Edges Factor

Hamming

Backtracking 15,554 1.00 1,560,854 1.00 116,299,379 1.00 6,862,924,649 1.00

Optimal (P = K + 1) 8,004 0.51 892,769 0.57 67,888,328 0.58 4,064,852,156 0.59

Optimal (P = K + 2) 8,922 0.57 854,303 0.55 65,116,676 0.56 3,916,700,994 0.57

Optimal (P = K + 3) 8,004 0.51 835,213 0.54 64,060,718 0.55 3,887,857,820 0.57

Edit

Backtracking 41,208 1.00 11,154,036 1.00 2,264,515,748 1.00 367,846,294,116 1.00

Optimal (P = K + 1) 20,908 0.51 6,315,779 0.57 1,299,709,022 0.57 213,296,122,595 0.58

Optimal (P = K + 2) 23,356 0.57 6,025,907 0.54 1,246,126,103 0.55 205,509,484,572 0.56

Optimal (P = K + 3) 20,908 0.51 5,892,667 0.53 1,226,903,544 0.54 203,270,363,390 0.55

Reduction in total number of edges up to a factor of 0.51

Optimal solution for Hamming distance has the same improvement effect for

Edit distance problem.

Not all read mismatch patterns in reference genome; Search-in-index speed-up

achieved by optimal search schemes for real data can be much more significant.

10/12

Computational Comparison

Total Number of Edges: Backtracking vs. Optimal Scheme

Distance Search Scheme
K = 1 K = 2 K = 3 K = 4

Edges Factor Edges Factor Edges Factor Edges Factor

Hamming

Backtracking 15,554 1.00 1,560,854 1.00 116,299,379 1.00 6,862,924,649 1.00

Optimal (P = K + 1) 8,004 0.51 892,769 0.57 67,888,328 0.58 4,064,852,156 0.59

Optimal (P = K + 2) 8,922 0.57 854,303 0.55 65,116,676 0.56 3,916,700,994 0.57

Optimal (P = K + 3) 8,004 0.51 835,213 0.54 64,060,718 0.55 3,887,857,820 0.57

Edit

Backtracking 41,208 1.00 11,154,036 1.00 2,264,515,748 1.00 367,846,294,116 1.00

Optimal (P = K + 1) 20,908 0.51 6,315,779 0.57 1,299,709,022 0.57 213,296,122,595 0.58

Optimal (P = K + 2) 23,356 0.57 6,025,907 0.54 1,246,126,103 0.55 205,509,484,572 0.56

Optimal (P = K + 3) 20,908 0.51 5,892,667 0.53 1,226,903,544 0.54 203,270,363,390 0.55

Reduction in total number of edges up to a factor of 0.51

Optimal solution for Hamming distance has the same improvement effect for

Edit distance problem.

Not all read mismatch patterns in reference genome; Search-in-index speed-up

achieved by optimal search schemes for real data can be much more significant.

10/12

Computational Comparison

Search in Index for all occurrences of 100,000 Illumina reads (R = 101)
in human reference genome (hg38)

D
is

t.

Search Tool
K = 1 K = 2 K = 3

Time Factor Time Factor Time Factor

H
am

m
. Backtracking 22.80s 1.00 269.24s 1.00 2417.06s 1.00

Optimal-scheme bidirect. (P = K + 1) 7.73s 2.95 19.78s 13.61 74.62s 32.39

Optimal-scheme bidirect. (P = K + 2) 7.39s 3.09 18.81s 14.31 68.69s 35.19

E
d

it

Backtracking 43.59s 1.00 1245.70s 1.00 27889.40s 1.00

Optimal-scheme bidirect. (P = K + 1) 11.21s 3.89 120.70s 10.32 1338.61s 20.83

Optimal-scheme bidirect. (P = K + 2) 10.66s 4.09 112.23s 11.10 1307.23s 21.33

Speed-up of up to 35 times

Hamming distance optimal scheme very effective for edit distance as well.

11/12

Computational Comparison

Search in Index for all occurrences of 100,000 Illumina reads (R = 101)
in human reference genome (hg38)

D
is

t.

Search Tool
K = 1 K = 2 K = 3

Time Factor Time Factor Time Factor

H
am

m
. Backtracking 22.80s 1.00 269.24s 1.00 2417.06s 1.00

Optimal-scheme bidirect. (P = K + 1) 7.73s 2.95 19.78s 13.61 74.62s 32.39

Optimal-scheme bidirect. (P = K + 2) 7.39s 3.09 18.81s 14.31 68.69s 35.19

E
d

it

Backtracking 43.59s 1.00 1245.70s 1.00 27889.40s 1.00

Optimal-scheme bidirect. (P = K + 1) 11.21s 3.89 120.70s 10.32 1338.61s 20.83

Optimal-scheme bidirect. (P = K + 2) 10.66s 4.09 112.23s 11.10 1307.23s 21.33

Speed-up of up to 35 times

Hamming distance optimal scheme very effective for edit distance as well.

11/12

Computational Comparison

Search in Index for all occurrences of 100,000 Illumina reads (R = 101)
in human reference genome (hg38)

D
is

t.

Search Tool
K = 1 K = 2 K = 3

Time Factor Time Factor Time Factor

H
am

m
. Backtracking 22.80s 1.00 269.24s 1.00 2417.06s 1.00

Optimal-scheme bidirect. (P = K + 1) 7.73s 2.95 19.78s 13.61 74.62s 32.39

Optimal-scheme bidirect. (P = K + 2) 7.39s 3.09 18.81s 14.31 68.69s 35.19

E
d

it

Backtracking 43.59s 1.00 1245.70s 1.00 27889.40s 1.00

Optimal-scheme bidirect. (P = K + 1) 11.21s 3.89 120.70s 10.32 1338.61s 20.83

Optimal-scheme bidirect. (P = K + 2) 10.66s 4.09 112.23s 11.10 1307.23s 21.33

Speed-up of up to 35 times

Hamming distance optimal scheme very effective for edit distance as well.

11/12

Open questions / problems

Can we eliminate the input variables S and P

Improve MIP formulation (cuts, symmetry elimination)

Is the optimal solution always a partition of the mismatch patterns?

What is the best point to stop search in index and start in-text

verification?

12/12

Optimal Search Schemes

Optimal search schemes are available in our paper for community use

K = 1 K = 2 K = 3 K = 4

Optimal (P = K + 1)
(12, 00, 01)

(21, 01, 01)

(123, 002, 012)

(321, 000, 022)

(231, 011, 012)

(1234, 0003, 0233)

(2341, 0000, 1223)

(3421, 0022, 0033)

(12345, 00004, 03344)

(23451, 00000, 22334)

(54321, 00033, 00444)

Optimal (P = K + 2)
(123, 001, 001)

(321, 000, 011)

(2134, 0011, 0022)

(3214, 0000, 0112)

(4321, 0002, 0122)

(12345, 00022, 00333)

(43215, 00000, 11223)

(54321, 00003, 02233)

(123456, 000004, 033344)

(234561, 000000, 222334)

(654321, 000033, 004444)

Optimal (P = K + 3)
(1234, 0000, 0011)

(4321, 0001, 0011)

(21345, 00011, 00222)

(43215, 00000, 00112)

(54321, 00002, 01122)

(123456, 000003, 022233)

(234561, 000000, 111223)

(654321, 000022, 003333)

(1234567, 0111111, 3333334)

(1234567, 0000000, 0044444)

(7654321, 0000004, 0333344)

Thank you!

Thanks to

Texas A&M University High Performance Computing Facility

Max-Planck Research School for Computational Biology and Scientific Computing

References i

[Abouelhoda et al., 2004] Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced suffix arrays.
Journal of Discrete Algorithms 2(1) (2004) 53–86

[Burrows & Wheeler, 1994] Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Technical
Report 124, Digital SRC Research Report (1994)

[Ferragina & Manzini, 2000] Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: FOCS ’00.
(2000) 390–398

[Kucherov et al., 2016] Kucherov, G., Salikhov, K., Tsur, D.: Approximate string matching using a bidirectional index.
Theoretical Computer Science 638 (2016) 145–158

[Lam et al., 2009] Lam, T.W., Li, R., Tam, A., Wong, S., Wu, E., Yiu, S.M.: High throughput short read alignment via
bi-directional bwt. In: IEEE BIBM ’09. 31–36

[Li & Durbin, 2009] Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics 25(14) (2009) 1754–1760

[Maaß, 2003] 11. Maaß, M.G.: Linear bidirectional on-line construction of affix trees. Algorithmica 37(1) (2003) 43–74

References ii

[Manber & Myers, 1990] Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches. In: SODA ’90.
(1990) 319–327

[Pockrandt et al., 2017] Pockrandt, C., Ehrhardt, M., Reinert, K.: EPR-Dictionaries: A Practical and Fast Data Structure
for Constant Time Searches in Unidirectional and Bidirectional FM Indices. In: RECOMB ’17. (2017) 190–206

[Reinert et al., 2015] Reinert, K., Langmead, B., Weese, D., Evers, D.J.: Alignment of Next-Generation Sequencing Reads.
Annual review of genomics and human genetics 16 (2015) 133–151

[Siragusa, 2015] Siragusa, E.: Approximate string matching for high-throughput sequencing. PhD thesis, Freie Universität
Berlin (2015)

[Strothmann, 2004] Strothmann, D.: The affix array data structure and its applications to RNA secondary structure analysis.
Theoretical Computer Science 389(1-2) (2007) 278–294

[Vroland et al., 2016] Vroland, C., Salson, M., Bini, S., Touzet, H.: Approximate search of short patterns with high error
rates using the 01*0 lossless seeds. Journal of Discrete Algorithms (2016) 3–16

MIP Main Variables

ns,l,d: Number of edges at level l of the trie of search s with d

cumulative mismatches

xs,i,j : Assignment of piece j to position (iteraion) i in search s

Ls,i: Lowerbound on number of cumulative mistmatches for search

s at iteration i

Us,i: Upperbound on number of cumulative mistmatches for search

s at iteration i

MIP Objective Function

min
∑S

s=1

∑R

l=1

∑K

d=0
ns,l,d

Minimize total number of edges.

[Kucherov et al., 2016] presented a weighting of edges assuming read and
text are randomly and independently drawn from the alphabet.

For ASM of DNA sequence reads to reference genomes, this is far from
reality.

Currently, it is not known how to weight,so we used total number of edges.

Our MIP can be easily modified to incorporate any weighting scenario.

MIP Constraints

subject to

∑P

i=1
xs,i,j = 1 for all s and j (1)∑P

j=1
xs,i,j = 1 for all s and i (2)

∑i

h=1
xs,h,j −

∑i

h=1
xs,h,j−1 = t

+
s,i,j − t

−
s,i,j for all s, i = 2, . . . , P − 1, j = 1, . . . , P + 1 (3)∑P+1

j=1
(t

+
s,i,j + t

−
s,i,j) = 2 for all s, i = 2, . . . , P − 1 (4)

Constraints (1)-(2) make sure one-to-one assignment of pieces to iterations.

Constraints (3)-(4) ensure connectivity of pieces.

MIP Constraints

d− (L
s,d l

m
e −md

l

m
e+ l) + 1 ≤ (R + 1)zs,l,d for all s, l, and d (5)

U
s,d l

m
e + 1− d ≤ (K + 1)zs,l,d for all s, l, and d (6)(

l
d

)
(σ − 1)

d
(zs,l,d + zs,l,d − 2) ≤ ns,l,d − ns,l−1,d − (σ − 1)ns,l−1,d−1 for all s, l, and d (7)

Ls,i ≤ Ls,i+1 for all s, and i = 1, . . . , P − 1 (8)

Us,i ≤ Us,i+1 for all s, and i = 1, . . . , P − 1 (9)

Constraints (5)-(7) enforce calculation of ns,l,d based on recursive equation

ns,l,d = ns,l,d + (σ − 1)ns,l−1,d−1 [Kucherov et al., 2016].

Constraints (8)-(9) ensure Ls,i and Us,i are non-decreasing.

MIP Constraints

Ls,i +K(λq,s − 1) ≤
∑i

h=1

∑P

j=1
aq,jxs,h,j ≤ Us,i +K(1− λq,s) for all q, s, and i (10)∑S

s=1
λq,s ≥ 1 for all q (11)

x1PP = 1 (12)∑S

t=s

∑j−1

k=1
xt,1,k ≤ (S − s+ 1)(1− xs,1,j) for all s and j = 2, . . . , P (13)∑P−i+1

j=1
xsij +

∑P

j=i
xsij = 1 for all s and i ≥ dP/2e+ 1 (14)

ns,l,d ≥ 0 for all q, s, i, j, l, and d (15)

Ls,i, Us,i ≥ 0 Integer for all s and i (16)

xs,i,j , λq,s, zs,l,d, zs,l,d, t
+
s,i,j , t

−
s,i,j ∈ {0, 1} for all q, s, i, j, l, and d (17)

Constraints (10)-(11) ensure search scheme covers all partition mismatch

patterns.

Constraints (12)-(14) eliminate some symmetry in solution space.

Constraints (15)-(17) set the sign and type of variables.

	Approximate String Matching Problem
	Optimal Search Scheme Problem
	Mixed Integer Program (MIP) for Optimal Search Scheme Problem
	Solving MIP
	Computational Gains of Optimal Search Schemes
	Towards a Full-Fledged Aligner (FAMOUS)
	Appendix

